Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
Bài 2:
a) (x+7)-13=25
(x+7) - 13 = 25
(x+7) - 13 + 13 = 25 + 13
x + 7 = 38
(x + 7) - 7 = 38 - 7
x = 31
Vậy, giá trị của x là 31.
b) ( 33-5(x-4)=13
33 - 5(x-4) = 13
33 - 5x + 20 = 13
-5x + 53 = 13
-5x = 13 - 53
-5x = -40
(-5x)/-5 = (-40)/-5
x = 8
Vậy, giá trị của x là 8.
C( x+6=3x
x + 6 = 3x
x + 6 - 6 = 3x - 6
x = 3x - 6
x - 3x = -6
(-2x) = -6
(-2x)/-2 = (-6)/-2
x = 3
Vậy, giá trị của x là 3.
d) ( 5x+3=2x+12
5x + 3 = 2x + 12
5x - 2x = 12 - 3
3x = 9
(3x)/3 = 9/3
x = 3
Vậy, giá trị của x là 3.
`#3107.101107`
1.
a)
`34046 = 30000 + 4000 + 40 + 6`
b)
201012 = 200000 + 1000 + 12`
c)
\(\overline{a2b}=a\times100+20+b\)
d)
\(\overline{abc1}=a\times1000+b\times100+c\times10+1\)
2.
a)
`(x + 7) - 13 = 25`
`=> x + 7 = 25 - 13`
`=> x + 7 = 12`
`=> x = 12 - 7`
`=> x = 5`
Vậy, `x = 5`
b)
`33 - 5(x - 4) = 13`
`=> 5(x - 4) = 33 - 13`
`=> 5(x - 4) = 20`
`=> x - 4 = 20 \div 5`
`=> x - 4 = 4`
`=> x = 4 + 4`
`=> x = 8`
Vậy, `x = 8`
c)
`x + 6 = 3x`
`=> x + 6 - 3x = 0`
`=> (x - 3x) + 6 = 0`
`=> -2x + 6 = 0`
`=> -2x = -6`
`=> 2x = 6`
`=> x = 6 \div 2`
`=> x = 3`
Vậy, `x = 3`
d)
`5x + 3 = 2x + 12`
`=> 5x - 2x = 12 - 3`
`=> 3x = 9`
`=> x = 9 \div 3`
`=> x = 3`
Vậy, `x = 3.`
____
`@` Quy tắc chuyển vế, đổi dấu:
- Khi chuyển vế 1 số hạng vế này qua vế kia, ta đổi dấu cho số hạng đó. Nếu số hạng đó mang dấu dương (+) khi chuyển vế đổi thành dấu âm (-), ngược lại, nếu số hạng đó mang dấu âm (-) khi chuyển vế đối thành dấu dương (+).
\(#V3L6\)
\(a,5,2x+7\dfrac{2}{5}=6\dfrac{3}{4}\\ \Rightarrow\dfrac{26}{5}x+\dfrac{37}{5}=\dfrac{27}{4}\\ \Rightarrow\dfrac{26}{5}x=-\dfrac{13}{20}\\ \Rightarrow x=-\dfrac{1}{8}\\ b,2,4:\left(\dfrac{-1}{2}-x\right)=1\dfrac{3}{5}\\ \Rightarrow\dfrac{12}{5}:\left(\dfrac{-1}{2}-x\right)=\dfrac{8}{5}\\ \Rightarrow\dfrac{-1}{2}-x=\dfrac{3}{2}\\ \Rightarrow x=-2\)