Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
4,
Gọi ƯCLN của ( 5n+7, 7n+10) = d
Ta có:
5n+7 ⋮ d
7n+10 ⋮ d
=> 7.(5n+7) ⋮ d
5.(7n+10) ⋮ d
=> 35n + 49 ⋮ d
35n + 50 ⋮ d
=> 35n + 50 - (35n + 49) ⋮ d
=> 1 ⋮ d
=> d=1
Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12