K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

\(\dfrac{x^2-3x}{2x^2-3x-9}=\dfrac{x^2+3x}{A}\)

\(\Rightarrow A=\dfrac{\left(x^2+3x\right)\left(2x^2-3x-9\right)}{x^2-3x}\)

\(\Rightarrow A=\dfrac{x\left(x+3\right)\left(2x^2-3x-9\right)}{x\left(x-3\right)}\)

\(\Rightarrow A=\dfrac{\left(x+3\right)\left(2x^2-3x-9\right)}{\left(x-3\right)}\)

mà \(x=-\dfrac{3}{2}\)

\(\Rightarrow A=\dfrac{\left(-\dfrac{3}{2}+3\right)\left(2\left(-\dfrac{3}{2}\right)^2-3\left(-\dfrac{3}{2}\right)-9\right)}{\left(-\dfrac{3}{2}-3\right)}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(2.\dfrac{9}{4}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(\dfrac{9}{2}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(\dfrac{9}{2}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}=0\)

10 tháng 8 2023

A = 0

10 tháng 8 2023

Câu khó thế

10 tháng 8 2023

um khó mà giúp tui đi mn

10 tháng 8 2023

\(\dfrac{3x-1}{3x^2+5x+2}=\dfrac{1}{x+2}\left(x\ne-2;x\ne\dfrac{1}{3}\right)\)

\(\Rightarrow\left(3x-1\right)\left(x+2\right)=3x^2+5x+2\)

\(\Rightarrow3x^2+6x-x-2=3x^2+5x+2\)

\(\Rightarrow3x^2+5x-2=3x^2+5x+2\)

\(\Rightarrow-2=2\) (vô lý)

Bạn xem lại đề bài

28 tháng 6 2017

Phân thức đại số

24 tháng 7 2017

câu d

\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)

7 tháng 8 2021

a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)

\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)

b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)

\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)

c, tương tự 

22 tháng 7 2017

a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)

\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{-1}{2}\)

b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=-\dfrac{3}{x-3}\)

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)

19 tháng 12 2020

a) Ta có: \(B=\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right)\cdot\dfrac{3x^2-9x}{x^2+6x+9}\)

\(=\left(\dfrac{x}{3\left(x-3\right)}-\dfrac{2x-3}{x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\left(\dfrac{x^2}{3x\left(x-3\right)}-\dfrac{3\left(2x-3\right)}{3x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x^2-6x+9}{3x\left(x-3\right)}\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x^2-6x+9}{x^2+6x+9}\)

b) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{x+2}\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)

\(=\dfrac{-6}{x-2}\)