Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thể tích không khí trong chiếc lều là: \(\frac{1}{3}{.3^2}.2,8 = 8,4\) (\({m^3}\))
b) Độ dài trung đoạn của hình chóp là: \(\sqrt {2,{8^2} + 1,{5^2}} \approx 3,18\)
Diện tích vải lều là: \(\frac{{4.3}}{2}.3,18= 19,08\) (\(c{m^2}\))
Diện tích vải lều cần phủ kín các mặt bên:
S = 4 . 3 . 3,2 : 2 = 19,2 (m²)
Sửa đề: Độ dài cạnh đáy là 5m
Chu vi đáy là: 5+5+5=15(m)
Diện tích xung quanh là: \(\dfrac{1}{2}\cdot15\cdot5=37,5\left(m^2\right)\)
Diện tích cần sơn là: \(37,5-10=27,5\left(m^2\right)\)
Số tiền cần bỏ ra là: \(27,5\cdot120000=3300000\left(đồng\right)\)
Diện tích xung quanh của kho chứa:
\(S_{xq}=p\cdot d=\dfrac{12+12+12}{2}\cdot8=144\left(m^2\right)\)
Diện tích cần sơn thực tế:
\(S_s=S_{xq}-S_c=144-5=139\left(m^2\right)\)
Số tiền cần dùng để hoàn thành việc sơn là:
\(T=S_s\cdot30000=4170000\left(đ\right)\)
Thể tích phần thân của lều là diện tích đáy nhân chiều cao: V_thân = Diện tích đáy × chiều cao = 2,4m × 2,4m × 1,8m = 10,368m³ Thể tích phần mái của lều là diện tích đáy nhân chiều cao chia 3:
V_mái = (Diện tích đáy × chiều cao) ÷ 3 = (2,4m × 2,4m × 0,6m) ÷ 3 = 1,728m³
Vậy, thể tích không khí có trong cái lều là: V_lều = V_thân + V_mái = 10,368m³ + 1,728m³ = 12,096m³
1b)
Diện tích bề mặt phần thân của lều là tổng diện tích các mặt của hình hộp chữ nhật: S_thân = 2(Chiều dài × Chiều rộng + Chiều dài × Chiều cao + Chiều rộng × Chiều cao) = 2(2,4m × 2,4m + 2,4m × 1,8m + 2,4m × 1,8m) = 2(5,76m² + 4,32m² + 4,32m²) = 2 × 14,4m² = 28,8m²
Diện tích bề mặt phần mái của lều là diện tích bề mặt của hình chóp tứ giác đều: S_mái = Diện tích đáy + Diện tích các mặt bên = 2,4m × 2,4m + 4(1/2 × cạnh đáy × chiều cao) = 5,76m² + 4(1/2 × 2,4m × 0,6m) = 5,76m² + 4(0,72m²) = 5,76m² + 2,88m² = 8,64m²
Vậy, tổng diện tích vải dùng để lợp mái và phần thân của lều là: S_lều = S_thân + S_mái = 28,8m² + 8,64m² = 37,44m²
2a) Để tính thể tích của hình chóp, ta sử dụng công thức: V = (Diện tích đáy × chiều cao) ÷ 3
Với hình chóp tứ giác đều, diện tích đáy là cạnh đáy nhân cạnh đáy, nên ta có: V = (cạnh đáy × cạnh đáy × chiều cao) ÷ 3 = (15cm × 15cm × 8cm) ÷ 3 = 600cm³
2b) Để tính diện tích xung quanh của hình chóp, ta sử dụng công thức: S_xq = Diện tích đáy + Diện tích các mặt bên
Với hình chóp tứ giác đều, diện tích đáy là cạnh đáy nhân cạnh đáy, nên ta có: S_xq = cạnh đáy × cạnh đáy + 4 × (1/2 × cạnh đáy × chiều cao) = 15cm × 15cm + 4 × (1/2 × 15cm × 8cm) = 225cm² + 240cm² = 465cm²
2c)
Theo định lý Pythagoras, ta có: c² = d² + h² c² = (15cm)² + (8cm)² c² = 225cm² + 64cm² c² = 289cm² c = √289cm c = 17cm
Vậy, khoảng cách từ đỉnh của hình chóp đến mỗi cạnh đáy của hình chóp là 17cm.
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
Bài 6:
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Vì M là trung điểm của BC
nên \(MB=MC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔAMB vuông tại M
=>\(AM^2+MB^2=AB^2\)
=>\(AM^2+6^2=10^2\)
=>\(AM^2+36=100\)
=>\(AM^2=100-36=64\)
=>\(AM=\sqrt{64}=8\left(cm\right)\)
b: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
c: AMCK là hình chữ nhật
=>AK//CM và AK=CM
Ta có: AK//CM
M\(\in\)BC
Do đó: AK//MB
Ta có: AK=CM
CM=MB
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
d: Để hình chữ nhật AMCK trở thành hình vuông thì AM=CM
mà \(CM=\dfrac{BC}{2}\)
nên \(AM=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
câu này đề cương trường thcs long bình dễ mà cx đi hỏi à s gà v