Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$
\(a.\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\\\Leftrightarrow \left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\\\Leftrightarrow x-23=0\left(vi\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\ne0\right)\\ \Leftrightarrow x=23\)
Này tớ làm tắt có gì cậu không hiểu nói tớ nhé
\(b.\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\\ \Leftrightarrow\frac{x+2}{98}+1+\frac{x+3}{97}+1-\left(\frac{x+4}{96}+1+\frac{x+5}{95}+1\right)=0\\\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\\\Leftrightarrow \left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\\ \Leftrightarrow x+100=0\left(Vi\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\right)\\\Leftrightarrow x=-100\)
h.
\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)
\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)
Suy ra: 2004 - x = 0
Vậy x = 2004
\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)
\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )
\(\Leftrightarrow x=23\)
Vậy pt có tập nghiệm S = { 23 }
\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy pt có tập nghiệm S = { 100 }
\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)
\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
Vậy pt có tập nghiệm S = { 2005 }
\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)
\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\)
\(\Leftrightarrow x=300\)
Vậy pt có tập nghiệm S = { 300 }
\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)
\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)
\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy pt có tập nghiệm S = { 100 }
\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)
\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)
\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy pt có tập nghiệm S = { 10 }
\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
\(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
Vậy pt có tập nghiệm S = { 2004 }
\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy pt có tập nghiệm S = { -100 }
\(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}\right)=\left(x-23\right)\left(\frac{1}{26}+\frac{1}{27}\right)\text{ nhận thấy:}\frac{1}{24}+\frac{1}{25}>\frac{1}{26}+\frac{1}{27}\)
\(\Rightarrow x-23=0\Leftrightarrow x=23\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\Rightarrow\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)=\left(\frac{x+3}{2002}+1\right)+\left(\frac{x+4}{2001}+1\right)\)
\(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\text{dạng giống câu a rồi nha}\)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\Leftrightarrow300-x=0\)
Vậy: x=300
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
Các câu na ná chắc nên mk làm mẫu 2 bài thui nha !
a, pt <=> x-23/24 + x-23/25 - x-23/26 - x-23/27 = 0
<=> (x-23).(1/24+1/25-1/26-1/27) = 0
<=> x-23=0 ( vì 1/24+1/25-1/26-1/27 > 0 )
<=> x=23
b, pt <=> (201-x/99 + 1)+(203-x/97 + 1)+(205-x/95 + 1) = 0
<=> 300-x/99 + 300-x/97 + 300-x/95 = 0
<=> (300-x).(1/99+1/97+1/95) = 0
<=> 300-x = 0 ( vì 1/99+1/97+1/95 > 0 )
<=> x=300
Tk mk nha
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300