Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13