\(\frac{a}{b}=\frac{c}{d}\)

d) \(\frac{a^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-cd\)

\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)

12 tháng 8 2016

bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.

mình suy từ kết quả lên đề bài cho nha

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

\(\Rightarrow bd-ad=bd-bc\)

\(\Rightarrow d\left(b-a\right)=b\left(d-c\right)\)

\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(đpcm\right)\)

12 tháng 8 2016

Do a/b = c/d

=> 1 - a/b = 1 - c/d

=> b/b - a/b = d/d - c/d

=> b - a/b = d - c/d

Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)

Ta chứng minh ngược :

 \(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)

\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )

\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )

12 tháng 8 2016

AB = CD và thành 3a + 2016 + ab =3434

= 3c + 3434 +cd= 4354

ds ________________________

24 tháng 8 2016

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

                                       =>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)

                                      =>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)

=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

24 tháng 8 2016

chứng minh này chị ngu lắm em

24 tháng 8 2016

TỈ lệ cần chứng minh 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a2016b2015c2016d =2016a+2017b2016c+2017d 

Vì ab =cd ac =bd  = 2015a2015c =2016b2016d =2016a2016c =2017b2017d 

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)

13 tháng 8 2016

Để \(M\in Z\)thì x + 2 chia hết cho 3

=> \(x=3k+1\left(k\in Z\right)\)

Vậy với \(x=3k+1\left(k\in Z\right)\)thì \(M\in Z\)

13 tháng 8 2016

\(M\in Z\)=>x+2 chia hết cho 3

=>x+2=3k ( \(k\in Z\))

x=3k-2 ( \(k\in Z\))

Với x=3k-2 thì M thuộc Z

23 tháng 6 2020

ai giải giúp mình nhanh với

24 tháng 6 2020

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)

\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)

\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)  \((1)\)

\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)

\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\)   \((2)\)

Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)

Học tốt

Nhớ kết bạn với mình

Bạn nên kiểm tra kĩ lại đề.

5 tháng 3 2017

Đúng đề mà bn, ko sai đc đâu, mk chắc chắn mà.

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you