K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Gọi d là ƯCLN của 12n + 1 và 30n + 2 

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d 

=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d

=> d = 1

Vậy phân số \(A=\frac{12n+1}{30n+2}\)

4 tháng 3 2017

Gọi ƯCLN(12n+1;30n+2)=d => 12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d và 60n+4 chia hết cho d

=>(60n+5)-(60n-+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Phân số \(\frac{12n+1}{30n+2}\) có ƯCLN(12n+1;30n+2)=> \(\frac{12n+1}{30n+2}\) tối giản với mọi số nguyên n

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
15 tháng 3 2022

Gọi d là ước chung của 7n + 4 và 5n + 3.

⇒ 7n + 4⋮d và 5n + 3⋮d

⇒ 5( 7n + 4)⋮d và 7( 5n + 3)⋮d

⇒35n + 20⋮d và 35n + 21⋮d

⇒35n + 20 - 35n - 21⋮d

⇒-1⋮d

⇒d là ước của -1. Mà Ư(-1) ={ 1; -1}

⇒d ∈ { 1; -1}

Như vậy ta thấy hai số 7n + 4 và 5n + 3 chỉ có hai ước là 1 và -1

Vậy phân số 7n+4/5n+3 là phân số tối giản

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

Gọi \(d\inƯC\left(3n-5;3-2n\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n-5⋮d\\3-2n⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n-10⋮d\\6n-9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(3n-5;3-2n\right)=1\)

hay \(\dfrac{3n-5}{3-2n}\) là phân số tối giản(đpcm)

28 tháng 3 2021

có đúng ko đấy để mình còn chép vào này!

22 tháng 2 2016

Gọi d là ƯC ( 2n + 3 ; 3n + 5 )

=> 2n + 3 ⋮ d => 3.( 2n + 3 ) ⋮ d => 6n + 9 ⋮ d

=> 3n + 5 ⋮ d => 2.( 3n + 5 ) ⋮ d => 6n + 10 ⋮ d

=> [ ( 6n + 10 ) - ( 6n + 9 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 2n + 3 ; 3n + 5 ) = 1 nên \(\frac{2n+3}{3n+5}\) là p/s tối giản

22 tháng 2 2016

Gọi d là ƯC 9 2n + 3 ; 3n + 5 )

=> 2n + 3 chia hết cho d => 3 ( 2n + 3 ) chia hết cho d => 6n + 9 chia hết cho d

=> 3n + 5 chia hết cho d => 2 ( 3n + 5 ) chia hết cho d => 6n + 10 chia hết cho d

=> [ ( 6n + 10 ) - ( 6n + 9 ) ] chia hết cho d

=> 1 chia hết cho d = > d = 1

 Vậy ,..........................