K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

Bài 2: 

a. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2

Theo bài cho, ta có: n + (n+1) + (n+2) = 3n + 3

Vì 3 chia hết cho 3 => 3n chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b. Chứng minh tương tự câu a

c. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2 (n thuộc N)

Xét 3 trường hợp:

TH1: n chia cho 3 dư 0 

=> n chia hết cho 3

TH2: n chia cho 3 dư 1 

Có: n = 3q+1

n + 2 = 3q+1+2

n+2 = 3q + 3

n+2 = 3q + 3.1 

n+2 = 3.(q+1)

=> n+2 chia hết cho 3 

TH3: n chia cho 3 dư 2

Có: n = 3q+2

n + 1 = 3q+2+1

n+ 1 = 3q + 3

n+1 = 3q + 3.1

n+1 = 3.(q+1)

=> n+1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3