Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C H H H I I I K K K D D D a/\(\Delta ABK:IA=IB,BH=KH\Rightarrow IH//AK,AD//\Rightarrow AKHD\) là hình bình hành
b/\(AHBD:AD//,AD=BH\left(=HK\right),AH\perp BH\Rightarrow AHBD\)là hình chữ nhật
\(\Rightarrow S_{AHBD}=AH.BH=6.\sqrt{\left(AB^2-AH^2\right)}=6.8=48cm^2\)
a)
Xét \(\Delta\)HBA và \(\Delta\)HAC
có: ^BHA = ^AHC = 90 độ
^HBA = ^HAC ( cùng phụ ^HAB )
=> \(\Delta\)HBA ~ \(\Delta\)HAC
b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm
=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
=> \(AH=\frac{6.8}{10}=4,8\)cm
c) Tích chất phân giác
=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)
=> AD = 3 cm; DC = 5 cm
Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)
A B C D H
a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)
\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)
\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)
Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)
+) \(\widehat{HAC}=\widehat{ABC}\)
\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )
b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)
c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)
\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)
\(\Rightarrow DC=5.1=5\); \(AD=3.1=3\)
Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)
1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)
\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)
\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)
\(=3x^2+12y^2-8xy-5x+10y-7\)
\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)
\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)
\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)
\(=8y^2+12y+5\)
\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)
\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)
a, Theo pytago tam giác ABC vuông tại A
BC=√36+64=10cmBC=36+64=10cm
=> AB / BH = BC / AB => AB^2 = BH.BC
=> BH = AB^2/BC = 36/10 = 18/5 cm
=> CH = BC - BH = 32/5 cm
rồi, kìa, sao ko ai quan tâm đến tui hết zậy, tổn thương quá ;-;