K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,H,E cùng nằm trên đường tròn đường kính AH

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>KC\(\perp\)AC

mà HD\(\perp\)AC

nên KC//HD

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

11 tháng 5 2018

A B C D E H K M F

Tứ giác ACKB nt đường tròn => ^ABC = ^AKC

Mà ^ABC = ^AHE (Cùng phụ ^BAD) nên ^AKC = ^AHE

Do ^AHE = ^MHF (Đối đỉnh) => ^AKC = ^MHF. 

Ta có: ^AKC + ^MKF = 1800 => ^MHF + ^MKF = 1800

=> Tứ giác MHFK nt đường tròn => ^AMH = ^AFK

Xét tam giác AHM và tam giác AKF: ^KAF chung; ^AMH = ^AFK

=> Tam giác AHM ~ Tam giác AKF (g.g)

=> AH/AK = AM/AF => AH.AF = AM.AK (đpcm).

a: góc AEB=góc ADB=90 độ

=>ABDE nội tiếp

b: góc CBK=1/2*180=90 độ

Xet ΔCBK vuông tại B và ΔCFA vuông tại F có

góc BCK=góc FCA

=>ΔCBK đồng dạng vơi ΔCFA

=>CB/CF=CK/CA

=>CB*CA=CF*CK