K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(a,x=-1\\ \Leftrightarrow1-2\left(m+1\right)+m^2-3m=0\\ \Leftrightarrow-1-5m+m^2=0\\ \Leftrightarrow m^2-5m-1=0\\ \Delta=25+4=29\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)

\(b,\)Pt có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+12m>0\\ \Leftrightarrow20m+4>0\Leftrightarrow m>-\dfrac{1}{5}\)

\(c,\)Để pt có nghiệm duy nhất (nghiệm kép)

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)=0\\ \Leftrightarrow20m+4=0\\ \Leftrightarrow m=-\dfrac{1}{5}\)

 

 

 

a: Thay m=3 vào pt, ta được:

\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thay x=-2 vào pt, ta được:

\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)

\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)

\(\Leftrightarrow m^2-2m+4+4m-4=0\)

=>m(m+2)=0

=>m=0 hoặc m=-2

Theo hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)

c: \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)

\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)

\(\Leftrightarrow2m^2-4m=0\)

=>2m(m-2)=0

=>m=0 hoặc m=2

5 tháng 2 2022

em cảm ơn ạ

10 tháng 7 2016

can tui giup k

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

loading...  loading...  loading...  

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)

\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)

\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)

\(=4m^2-8m+4+4m^2-4m-24\)

\(=-12m-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-12m-20>0\)

\(\Leftrightarrow-12m>20\)

hay \(m< \dfrac{-5}{3}\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow-12m-20=0\)

\(\Leftrightarrow-12m=20\)

hay \(m=\dfrac{-5}{3}\)

Để phương trình vô nghiệm thì Δ<0

\(\Leftrightarrow-12m-20< 0\)

\(\Leftrightarrow-12m< 20\)

hay \(m>\dfrac{-5}{3}\)

2: ĐKXĐ: \(m\ne-2\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)

Suy ra: 2m-2=3-m

\(\Leftrightarrow2m+m=3+2\)

\(\Leftrightarrow3m=5\)

hay \(m=\dfrac{5}{3}\)(thỏa ĐK)