\(\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)=2\left(z+x\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cái trên thì bn dùng BĐT Bunhiakovshi nha

cái dưới hơi rườm tí mik ko bt lm đúng ko

19 tháng 9 2019

\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)

\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)

\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)

\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)

\(+\left(ax-a+b\right)]\)

\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)

\(-bx+ax-a+b)\)

\(=x\left(x+1\right)\left(4ax-a+3b\right)\)

Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)

Đồng nhất hệ số là ra 

23 tháng 6 2017

a) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

b) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(2y\right)\left(2x\right)\)

c) \(\left(3x+1\right)^2-\left(x+1\right)^2=4x\left(2x+1\right)\)

f) \(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

23 tháng 6 2017

\(d,x^2-10x+25=\left(x-5\right)^2\)

\(e,x^2-x-y^2-y=x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(h,xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=xy\left(x+y\right)+yz\left(y+z\right)+xyz+xz\left(x+z\right)+2xyz+xyz\)

\(=xy\left(x+y\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)

\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(g,3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48\)

\(=3x^2+12x-63+x^2-8x+64\)

\(=4x^2+4x+1=\left(2x+1\right)^2\)

\(j,x^3-x+y^3-y=x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html

28 tháng 5 2017

a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)

\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)

\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)

b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)

c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

28 tháng 5 2017

a,  Tương đương   :   \(a^2x^2+a^2y^2+b^2x^2+b^2y^2\)   =   \(a^2x^2+2axby+b^2y^2\)  

                                 \(a^2y^2-2axby+b^2x^2=0\) 

                                 \(\left(ay-bx\right)^2\)  = 0

                                 \(ay-bx=0\)

                                 \(ay=bx\)

                                \(\frac{a}{x}=\frac{b}{y}\)   dpcm

Câu b, c làm tương tự câu a

f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)

g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)

h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)

i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2=4x^2\)

a: \(=xy^2-xz^2+z^2y-x^2y+x^2z-zy^2\)

\(=-xy\left(x-y\right)-z^2\left(x-y\right)+z\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(-xy-z^2+zx+zy\right)\)

\(=\left(x-y\right)\left[xz-xy+zy-z^2\right]\)

\(=\left(x-y\right)\left[x\left(z-y\right)-z\left(z-y\right)\right]\)

\(=\left(x-y\right)\left(z-y\right)\left(x-z\right)\)

d:

Tham khảo: 

loading...