Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
a/ Bạn tự giải (và chắc đề là k=5)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}k^2x-ky=2k\\x+ky=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=kx-2\\\left(k^2+1\right)x=2k+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2k+1}{k^2+1}\\y=\frac{2k^2+k}{k^2+1}-2=\frac{k-2}{k^2+1}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{2k+1}{k^2+1}+\frac{\left(k-2\right)^2}{\left(k^2+1\right)^2}=1\)
\(\Leftrightarrow\left(2k+1\right)\left(k^2+1\right)+\left(k-2\right)^2=\left(k^2+1\right)^2\)
\(\Leftrightarrow\left(k^2+1\right)\left(k^2-2k\right)-\left(k-2\right)^2=0\)
\(\Leftrightarrow\left(k-2\right)\left(k^3+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-\sqrt[3]{2}\end{matrix}\right.\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2
=>x=2-1+m^2/m^2 và y=(m+1)x-m-1
=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2
x+y=(m^2+m+2)/m^2
Để x+y min thì m^2+m+2 min
=>m^2+m+1/4+7/4 min
=>(m+1/2)^2+7/4min
=>m=-1/2
Trừ pt trên cho dưới:
\(\left(m-1\right)x=m-1\)
- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)
- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)
\(\Rightarrow y=-m-x=-m-1\)
Để \(y^2=x\)
\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)x+\left(m-1\right)^2y=12\left(m-1\right)\\3\left(m-1\right)x+36y=72\end{matrix}\right.\)
\(\Rightarrow\left(m-1\right)^2y-36y=12\left(m-7\right)\Rightarrow\left(m-7\right)\left(m+5\right)y=12\left(m-7\right)\)
- Nếu \(m=7\Rightarrow\) hệ có vô số nghiệm (loại)
- Nếu \(m=-5\Rightarrow\) hệ vô nghiệm (loại)
- Nếu \(m\ne-5;7\Rightarrow y=\frac{12}{m+5}\) \(\Rightarrow x=\frac{24}{m+5}\)
Để \(x+y=-1\Rightarrow\frac{12}{m+5}+\frac{24}{m+5}=-1\Leftrightarrow\frac{36}{m+5}=-1\Rightarrow m=-41\)
Để nghiệm của hệ là nguyên \(\Rightarrow\frac{12}{m+5}\) nguyên \(\Rightarrow m+5=Ư\left(12\right)\)
\(\Leftrightarrow m+5=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow m=\left\{-17;-11;-9;-8;-7;-6;-4;-3;-2;-1;1\right\}\)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)
a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)
\(\Rightarrow mx+my=4m-4\)
\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)