K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-4x+m=0\)

\(\text{Δ}=\left(-4\right)^2-4m=16-4m\)

Để (P) cắt Ox tại hai điểm phân biệt thì Δ>0

=>-4m+16>0

=>-4m>-16

=>m<4

(P) cắt trục Ox tại hai điểm A,B phân biệt nên \(A\left(x_A;0\right);B\left(x_B;0\right)\)

OA=3OB

=>\(OA^2=9OB^2\)

=>\(\left(x_A-0\right)^2+\left(y_A-0\right)^2=9\left[\left(x_B-0\right)^2+\left(y_B-0\right)^2\right]\)

=>\(\left(x_A\right)^2+\left(y_A\right)^2=9x_B^2+9y_B^2\)

=>\(x_A^2-9x_B^2=y_A^2-9y_B^2\)

=>\(x_A^2-9x_B^2=0\)

=>\(\left[{}\begin{matrix}x_A=3x_B\\x_A=-3x_B\end{matrix}\right.\)

Theo Vi-et, ta có:

\(x_A+x_B=4\) và \(x_A\cdot x_B=m\)

TH1: \(x_A=3x_B\)

\(x_A+x_B=4\)

=>\(3x_B+x_B=4\)

=>\(x_B=1\)

=>\(x_A=3\)

\(m=x_A\cdot x_B=1\cdot3=3\)

TH2: \(x_A=-3x_B\)

\(x_A+x_B=4\)

=>\(-3x_B+x_B=4\)

=>\(-2x_B=4\)

=>\(x_B=-2\)

\(x_A=-3\cdot x_B=-3\cdot\left(-2\right)=6\)

\(m=x_A\cdot x_B=6\cdot\left(-2\right)=-12\)