Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ BM cắt AC tại D. Vì M nằm trong tam giác ABC nên D nằm giữa A và C, ta có AC = AD + DC
Tam giác ABD có DB < AB + AD, =>
MB + MD < AB + AD (1)
Tam giác MDC có MC < DC + MD
Công (1) và (2) theo từng vế, ta được:
MB + MC + MD < AB + AD + DC + MD
=> MB + MC < AB + ( AD + DC )
=> MB + MC < AB + AC
Tương tự => MA + MB < AC + BC và MA + MC < AB + BC
=> MB + MC + MA + MB + MA + MC < AB + AC + AC + BC + AB + BC
=> 2(MA + MB +MC)<2(AB + AC + AB)
=> MA + MB + MC < AB + AC + AB (3)
Xét các tam giác MAB, MAC, MBC ta lần lượt có:
MA + MB > AB; MA + MC > AC; MB + MC > BC
=> MA + MB + MA + MC + MB + MC > AB + AC + BC
=> 2( MA + MB + MC) > AB + AC + BC
=> \(MA+MB+MC>\dfrac{AB+AC+BC}{2}\left(4\right)\)
Từ (3) và (4)
\(\Rightarrow\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
harumi05, hôm qua mất điện cả hôm nên ko trả lời, xin lỗi ví ko lên nha!
a) Ta lần lượt xét:
- Trong \(\Delta AMI\), ta có:
\(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)
\(\Leftrightarrow MA+MB< IA+IB\) (1)
- Trong \(\Delta BIC\),ta có:
\(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)
\(\Leftrightarrow IA+IB< CA+CB\) (2)
Từ (1), (2), ta nhận được \(MA+MB< IA+IB< CA+CB,đpcm\)
b) Ta lần lượt xét:
- Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
- Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
- Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)
Cộng theo vế (3),(4),(5), ta được:
\(2\left(MA+MB+MC\right)>AB+BC+AC\)
\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)
Mặt khác dựa theo kết quả cua câu a), ta có:
\(MA+MB< CA+CB\left(6\right)\)
\(MB+MC< AB+AC\left(7\right)\)
\(MA+MC< BA+BC\left(8\right)\)
Cộng theo vế (6),(7),(8), ta được:
\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)
\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)
Xét tg IAB
IA+IB>AB (trong tg tổng độ dài hai cạnh bao giờ cũng lớn hơn độ dài cạnh còn lại) (1)
Tương tự
IB+IC>BC (2)
IA+IC>AC (3)
Cộng 2 vế của (1) (2) (3)
2(IA+IB+IC)>AB+BC+AC=10 cm
=> IA+IB+IC>5 cm
a) Xét ΔABI và ΔCKI có:
IA = IC (gt)
∠BIA = ∠KIC (đối đỉnh)
IB = IK (gt)
⇒ ΔABI = ΔCKI (c-g-c)
⇒ ∠BAI = ∠ICK ( cặp góc tương ứng). Mà ∠BAI là góc vuông nên ∠ICK cũng là góc vuông
Vậy IC \(\perp\) CK
b) Vì ΔABI = ΔCKI (c-g-c) nên AB = CK (cặp cạnh tương ứng)
Xét ΔABC và ΔCKA có:
AC: cạnh chung
∠BAI = ∠ACK (cmt)
AB = CK (cmt)
⇒ ΔABC = ΔCKA (c-g-c)
Vậy BC = AK ( cặp cạnh tương ứng)
Xét ΔAID=ΔBIC có:
IA=IB(gt)
IC=ID(gt)
góc AID=góc CIB
Vậy ΔAID=ΔBIC (c-g-c)
=>góc IBC=góc DAB (2 góc tương ứng)
Mà góc IBC và góc DAB là hai góc so le trong
=>AD//BC (dấu hiệu nhận biết)
Vì ΔAID=ΔBIC
=>AD=CB (2 cạnh tương ứng)
Mà M,N lần lượt là trung điểm của AD và BC=>AM=NB
Xét t/g AIM và t/g BIN có :
AI=IB(gt)
NB=AM(cmt)
góc MAI=góc IBN (cmt)
Vậy t/g AIM=t/g BIN (c-g-c)
=>MI=NI (2 cạnh tương ứng)
Vì t/g AIM=t/g BIN =>góc AIM=góc NIB (2 góc tương ứng)
Mà góc AIM+góc AIN=180 độ
=>góc NIB+góc AIN=180 độ
=>M,I,N thẳng hàng
bạn ơi sao cái bài 1 hồi nãy bạn giải dùm mày bạn chưa vẽ hình cho mình vậy với gt , kl nữa