Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhé
a,Kẻ BK vuông góc với AC, đặt BK = h
tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)
tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)
Từ (1) và (2) => a/sin A = c/sin C
CMTT có b/sinB = c/sin C
=> dpcm
b, có SABC = (h.b)/2
mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)
CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Kéo dài $OA$ cắt $(O)$ tại $D$
Do $AD$ là đường kính nên $ABD$ vuông tại $B$
\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)
Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)
Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)
Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C c b a m D E F
a) Kẻ các đường cao \(AD;BE;CF\)
ta có : \(AD=AB.sinB\) và \(AD=AC.sinC\)
\(\Rightarrow AB.sinB=AC.sinC\Leftrightarrow c.sinB=b.sinC\Leftrightarrow\dfrac{c}{sinC}=\dfrac{b}{sinB}\)
làm tương tự ta có : \(\dfrac{b}{sinB}=\dfrac{a}{sinA}\) và \(\dfrac{a}{sinA}=\dfrac{c}{sinC}\)
\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)
b) ta có : \(BC^2=BE^2+EC^2=AB^2-AE^2+\left(AC-AE\right)^2\)
\(\Leftrightarrow BC=AB^2-AE^2+AC^2-2AC.AE+AE^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2AC.AB.cosA\)
\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\left(đpcm\right)\)
c) ta có : \(AB=BF+FA=BC.cosB+AC.cosA\)
\(\Leftrightarrow c=a.cosB+b.cosA\left(đpcm\right)\)
đặc \(M\) là chân đường trung tuyên kẻ từ \(A\) \(\left(m_a\right)\)
ta có : \(AM^2=AB^2+BM^2-2AB.BM.cosB\)
\(\Leftrightarrow AM^2=AB^2+BM^2-2AB.BM\dfrac{AB^2+BC^2-AC^2}{2AB.2BM}\)
\(\Leftrightarrow AM^2=AB^2+\left(\dfrac{BC}{2}\right)^2-\dfrac{AB^2+BC^2-AC^2}{2}\)
\(\Leftrightarrow AM^2=AB^2-\dfrac{AB^2+BC^2-AC^2}{2}+\dfrac{BC^2}{4}\)
\(\Leftrightarrow AM^2=\dfrac{2AB^2-AB^2-BC^2+AC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\Leftrightarrow m_a^2=\dfrac{c^2+b^2}{2}-\dfrac{a^2}{4}\left(đpcm\right)\)(chú ý câu này sử dụng công thức ở câu \(b;c\) nha)
![](https://rs.olm.vn/images/avt/0.png?1311)
Rối hình đừng hỏi, vì mình vẽ hình ra nháp nó đã rối sẵn rồi :)
Kẻ đường kính AD, BE, CF
\(\Delta ABD\) có: \(\hat{ABD}=90^o\)(góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\)\(\sin\hat{ADB}\)\(=\dfrac{AB}{AD}\)(tỉ số lượng giác) mà \(\hat{ACB}=\hat{ADB}\)(cùng chắn \(\stackrel\frown{AB}\)) \(\Rightarrow\)\(\sin\hat{ACB}\)\(=\dfrac{AB}{AD}\)\(\Rightarrow2R=\)\(AB\over\sin\hat{ACB}\)
Chứng minh tương tự với \(\Delta BCE,\Delta CAF\)\(\Rightarrow2R=\)\(BC\over\sin\hat{BAC}\)\(=\)\(AC\over\sin\hat{ABC}\)
Từ 2 điều trên ta được điều phải chứng minh
b, Ta có: \(\hat{ACD}=90^o\)(góc nội tiếp chắn nửa đường tròn)\(\Rightarrow\left\{{}\begin{matrix}AC\perp CD\\AC\perp BK\left(gt\right)\end{matrix}\right.\Rightarrow\)BK//CD\(\Leftrightarrow\)BH//CD
Chứng minh tương tự ta có: CH // BD (cùng vuông góc với AB)
Tứ giác BHCD có: BH // CD, CH // BD (cmt) nên là hình bình hành có 2 đường chéo HD và BC cắt nhau tại trung điểm I của BC nên H, I, D thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)
a) Xét ΔABC vuông tại A có
\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)
Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)
\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)
\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)
Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)
b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
\(=2\cdot AB\cdot AC\cdot0\)
=0
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)