K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

24 tháng 12 2020

a) Xét △DEM và △KFM có

DM=KM(giả thiết)

góc DME=góc KMF(2 góc đối đỉnh)

EM=MF(Vì M là trung điểm của EF)

=>△DEM =△KFM(c-g-c)

=> góc MDE=góc MKF (2 góc tương ứng)

hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF

=>DE//KF

b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ

Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có

HD=HP

HE là cạnh chung

=>   △DHE= △PHE(2 cạnh góc vuông)

=> góc DEM=góc PEM

=> EH là tia phân giác của góc DEP 

   hay EF là tia phân giác của góc DEP 

vậy EF là tia phân giác của góc DEP 

 

 

 

 

 

9 tháng 3 2020

D K H E I F O

tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE

Xét tam giác KEF và tam giác HFE

có EF chung

góc EKF=góc EHF = 900

góc KEF=góc  HFE  (CMT)

suy ra  tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)

suy ra EK = HF

mà DK+KE=DE, DH+HF=DF

lại có DE=DF (CMT)

suy ra KD=DH

b) xét tam giác DKO và tam giác DHO

có DO chung

góc DKO = góc DHO = 900

DK = DH (CMT)

suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)

suy ra góc KDO = góc HDO

suy ra DO là tia phân giác của góc EDF  (1)

c) Vì DK = DH suy ra tam giác DKH cân tại D

suy ra góc DKH= góc DHK

suy ra góc DKH+ góc DHK + góc KDH = 1800

suy ra góc DKH=(1800 - góc KDH) :2  (2) 

Tam giác DEF cân tại D

suy ra góc DEF + góc DFE + góc EDF = 1800

suy ra góc DEF = (1800 - góc KDH) :2 (3)

Từ (2) và (3) suy ra góc DKH = góc DEF

mà góc DKH đồng vị với góc DEF 

suy ra KH // EF

d) Xét tam giác DEI và tam giác DFI

có DE = DF  (CMT)

DI chung

EI = IF 

suy ra tam giác DEI = tam giác DFI (c.c.c)

suy ra góc EDI = góc FDI

suy ra DI là tia phân giác của góc EDF  (4)

Từ (1) và (4) suy ra DO trùng DI

hay ba điểm D, O, I thẳng hàng.

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0