K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

8 tháng 10 2020

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

c) Áp dụng công thức \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\),ta được:

\(Q=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(=1+1+1+...+1-\frac{1}{2021}\)

\(=2021-\frac{1}{2021}=\frac{4084440}{2021}\)

NV
8 tháng 3 2020

a/ \(D\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\Rightarrow D=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

b/\(2E=\sqrt[3]{8\sqrt{5}-16}+\sqrt[3]{8\sqrt{5}+16}\)

\(=\sqrt[3]{5\sqrt{5}-3.5.1+3\sqrt{5}-1}+\sqrt[3]{5\sqrt{5}+3.5.1+3\sqrt{5}+1}\)

\(=\sqrt[3]{\left(\sqrt{5}-1\right)^3}+\sqrt[3]{\left(\sqrt{5}+1\right)^3}=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(\Rightarrow E=\sqrt{5}\)

NV
8 tháng 3 2020

c/

\(F=\sqrt[3]{182+25\sqrt{53}}+\sqrt[3]{182-25\sqrt{53}}\)

\(F^3=364+3F\sqrt[3]{182^2-33125}=364-3F\)

\(\Leftrightarrow F^3+3F-364=0\)

\(\Leftrightarrow\left(F-7\right)\left(F^2+7F+52\right)=0\)

\(\Rightarrow F=7\)

Bài 2:

a/ \(C=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right)\left(\sqrt{4}+\sqrt{3}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}\)

\(=\sqrt{4}-1=2-1=1\)

5 tháng 7 2020

1.

SABC = \(\frac{AB.AC.sin\widehat{BAC}}{2}\) = ...

NV
5 tháng 7 2020

1. Kẻ \(BH\perp AC\Rightarrow BH=AB.sin60^0=2\sqrt{2}.\frac{\sqrt{3}}{2}=\sqrt{6}\)

\(\Rightarrow S_{ABC}=\frac{1}{2}BH.AC=3\sqrt{2}\)

2. \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right)\left(\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n\left(n+1\right)^2}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)

\(S=2020\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(=2020\left(1-\frac{1}{\sqrt{2020}}\right)=2020-\sqrt{2020}\)

10 tháng 1 2021

Ta có: \(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\sqrt{a^2-ab+b^2}}=\left(a+b\right)\sqrt{a^2-ab+b^2}\)

\(=\sqrt{a+b}\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}=\sqrt{a+b}\sqrt{a^3+b^3}\)

\(=\sqrt{\left(a+b\right)\left(a^3+b^3\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)

Áp dụng BĐT Bunhi... ta có:

\(\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)^2\ge\left(\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}\right)^2\)

\(\Rightarrow\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)+\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)\(\ge\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\sqrt{a^4}+\sqrt{b^4}=a^2+b^2\)

\(\Rightarrow\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}\ge a^2+b^2\) (1)

Tương tự ta có: \(\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}\ge b^2+c^2\) (2)

\(\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}\ge c^2+d^2\)(3)

\(\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge d^2+a^2\)(4)

Cộng vế với vế của 1,2,3,4 ta được:

\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\)\(\ge2\left(a^2+b^2+c^2+d^2\right)\left(\text{đ}pcm\right)\)

10 tháng 1 2021

Hoặc \(\left(a+b\right)\sqrt{a^2-ab+b^2}\ge a^2+b^2\Leftrightarrow ab\left(a-b\right)^2\ge0\)(bình phương lên)

6 tháng 7 2019

Câu b dễ hơn nên em xí trước. Nhưng em không chắc đâu:v

b) Xét số hạng tổng quát \(\frac{1}{\sqrt{x}+\sqrt{x+1}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\sqrt{x+1}-\sqrt{x}\) với x >= 0

Áp dụng vào,ta có:

\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

7 tháng 7 2019

a) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\frac{6\sqrt{2}}{6}=\sqrt{2}\)