Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
a: \(x^3+x^2-2x+a⋮x+1\)
\(\Leftrightarrow x^3+x^2-2x-2+a+2⋮x+1\)
=>a+2=0
hay a=-2
b: \(2x^3-4x^2-3a⋮2x-3\)
\(\Leftrightarrow2x^3-3x^2-x^2+1.5x-1.5x+2.25-3a-2.25⋮2x-3\)=>-3a-2,25=0
=>-3a=2,25
hay a=-0,75
c: \(4x^4+3x^2-ax+3⋮x+3\)
\(\Leftrightarrow4x^4+12x^3-12x^3-36x^2+39x^2+117x-ax+3⋮x+3\)
\(\Leftrightarrow-ax+3⋮x+3\)
\(\Leftrightarrow-ax-3a+3+3a⋮x+3\)
=>3a+3=0
hay a=-1
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
\(a,x^2\left(x-2x^3\right)\)
\(=x^3-2x^5\)
\(b,\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
\(c,\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
\(d,\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=\left(6x^2+x-2\right)\left(3-x\right)\)
\(=18x^2+3x-6-6x^3-x^2+2x\)
\(=17x^2+5x-6-6x^3-x^2\)
\(e,\left(x+3\right)\left(x^2+3x-5\right)\)
\(=x^3+3x^2-5x+3x^2+9x-15\)
\(=x^3+6x^2+4x-15\)
\(f,\left(xy-2\right)\left(x^3-2x-6\right)\)
\(=x^4y-2x^2y-6xy-2x^3+4x-12\)
\(g,\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+8x^3-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
a. x2(x−2x3)= x3-2x5
b. (x−2)(x−x2+4)= x2-x3+4x-2x+2x2-8= -x3+3x2+2x-8
c. (x2−1)(x2+2x)= x4+2x3-x2-2x
d. (2x−1)(3x+2)(3−x) = (6x2+x-2)(3-x)=18x2-6x3+3x-x2-6+2x =-6x3+17x2+5x-6
e. (x+3)(x2+3x−5)= x3+3x2-5x+3x2+9x-15= x3+6x2+4x-15
f. (xy−2)(x3−2x−6)= x4y-2x2y-6xy-2x3+4x+12
g. (5x3−x2+2x−3)(4x2−x+2)= 20x5-9x4+19x3-12x2+7x-6
a) Đặt: x = a- b; y = b - c ; z = c- a
Ta có: x + y + z = 0
=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)
=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Đặt: \(a=x^2-2x\)
Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)
d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt: \(x^2-8=t\)
Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)
\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)
\(=\left(2x^2+9x-16\right)^2\)
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
\( a)\dfrac{{3{x^4} - 2{x^3} - 2{x^2} + 4x - 8}}{{{x^2} - 2}}\\ = \dfrac{{3{x^4} - 2{x^3} - 6{x^2} + 4{x^2} + 4x - 8}}{{{x^2} - 2}}\\ = \dfrac{{3{x^2}\left( {{x^2} - 2} \right) - 2x\left( {{x^2} - 2} \right) + 4\left( {{x^2} - 2} \right)}}{{{x^2} - 2}}\\ = \dfrac{{\left( {{x^2} - 2} \right)\left( {3{x^2} - 2x + 4} \right)}}{{{x^2} - 2}}\\ = 3{x^2} - 2x + 4 \)
\( b)\dfrac{{2{x^3} - 26x - 24}}{{{x^2} + 4x + 3}}\\ = \dfrac{{2\left( {{x^3} - 13x - 12} \right)}}{{x + 3x + x + 3}}\\ = \dfrac{{2\left( {{x^3} + {x^2} - {x^2} - x - 12x - 12} \right)}}{{x\left( {x + 3} \right) + x + 3}}\\ = \dfrac{{2\left[ {{x^2}\left( {x + 1} \right) - x\left( {x + 1} \right) - 12\left( {x + 1} \right)} \right]}}{{\left( {x + 3} \right)\left( {x + 1} \right)}}\\ = \dfrac{{2\left( {x + 1} \right)\left( {{x^2} - x - 12} \right)}}{{\left( {x + 3} \right)\left( {x + 1} \right)}}\\ = \dfrac{{2\left( {{x^2} + 3x - 4x - 12} \right)}}{{x + 3}}\\ = \dfrac{{2\left[ {x\left( {x + 3} \right) - 4\left( {x + 3} \right)} \right]}}{{x + 3}}\\ = \dfrac{{2\left( {x + 3} \right)\left( {x - 4} \right)}}{{x + 3}}\\ = 2\left( {x - 4} \right)\\ = 2x - 8\)