Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
6A6. PHIẾU BÀI TẬP TUẦN 12
Bài 1. Biểu diễn các hiệu sau thành tổng rồi tính:
a) ( ) 23 12−− b) ( ) 43 53−−
c) ( ) ( ) 15 17 − − − d) 14 20 −
Bài 2. Tính nhanh
a) (2354 − 45) − 2354 b) (−2009) −(234 − 2009)
c) (16 + 23) + (153−16 − 23)
Bài 3. Tìm số nguyên x, biết:
a) ( ) 3155x −=−− b) 14 32 26 x − − + = −
c) x + (−31) −(−42) = −45 d) (−12) −(13− x) = −15− (−17).
Bài 4: Tìm x biết:
a, ( ) 2670x −−−= . b, ( ) ( ) 7 5 3 x + = − + − . c, ( ) 11811x −=−− .
d, 30 + (32 − x) =10 . e, x +12 + (−5) = −18 . g, 3− x = −21−(−9) .
Bài 5. Tìm số nguyên x, biết:
a) x − 43 = (35− x) − 48 b) 305− x +14 = 48+ ( x − 23)
c) −( x − 6 +85) = ( x + 51) − 54 d) −(35− x) − (37 − x) = 33− x
Bài 6.Tính tổng đại số sau một cách hợp lí
a) 7 −8 + 9 −10 +11−12 +...+ 2009 − 2010
b) −1− 2 − 3− 4 −...− 2009 − 2010
c) 1− 3− 5 + 7 + 9 −11−13+15 +....+ 2017 − 2019 − 2021+ 2023
Bài 7. Điền số thích hợp vào bảng sau
a 13 5 − 12− 10 − 10 − 12
b 21 3 17 − 10 − 10 − 12−
a + b −8 8
Bài 8. Tính nhanh
a) 215+ 43+ (−215) + (−25) b) (−312) + (−327) + (−28) + 27
c) (134 −167 + 45) − (134 + 45)
Bài 9. So sánh
a) 125 và 125+ (−2) b) −13 và (−13) + 7 c) −15 và (−15) + (−3)
Bài 10. Điền số thích hợp vào bảng sau:
a 3− 7− 8 0
b 8 −16 23 −27
ab−
a−
b−
…………………………….……….Hết………………………………
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)
b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)
c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)
\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)
\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)
Tương tự câu d,e,f bạn tự làm nhé
a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)
= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)
= \(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)
= 1 - 1 + \(\dfrac{2022}{2023}\)
= \(\dfrac{2022}{2023}\)
b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)
= \(\dfrac{33}{11}\)
= 3
c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }
= 2000 + { 20 - [ 4.1 - (9+5):2]}
= 2000 + { 20 - [ 4 - 14 : 2 ]}
= 2000 + { 20 - [ 4 -7]}
= 2000 + { 20 - (-3)}
= 2000 + 23
= 2023
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)
dạ em nhầm ạ phần a) số 12 phải là 12