K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow a=\dfrac{c^2}{b}\Leftrightarrow\dfrac{a}{b}=\dfrac{\dfrac{c^2}{b}}{b}=\dfrac{c^2}{b^2}\left(1\right)\\ \dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(2\right)\\ \left(1\right)\left(2\right)\LeftrightarrowĐpcm\\ b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\\ \text{Giả sử: }\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\Leftrightarrow ab^2-a^3=a^2b+bc^2-a^3-ac^2\\ \Leftrightarrow ab^2-a^2b=bc^2-ac^2\\ \Leftrightarrow ab\left(b-a\right)=c^2\left(b-a\right)\\ \Leftrightarrow ab=c^2\left(\text{luôn đúng}\right)\)

Vậy ta đc đpcm

13 tháng 12 2021

đpcm là jzợ??

25 tháng 7 2021

a, Ta có: \(\frac{a}{c}\)\(\frac{c}{b}\)\(\Rightarrow\)\(ab\)\(c^2\)

Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)

Ta có: b(a2+c2)= b.a2+b.c(1)

Thay ab= c2 vào 1 ta có:

b.a2+b.a.b= b2.a+a2.bb

Ta có: a(b2+c2) = a.b2+a.c2 (2)

Thay ab= c2 vào (1) ta có:

a.b2+b.a.a= b2.a+a2.bb

Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)

\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)

\(\Rightarrow\)Đpcm (Điều phải chứng minh)

Chúc bn học tốt

25 tháng 7 2021

a.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

b.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

8 tháng 11 2018

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

25 tháng 5 2021

Do \frac{1}{{{n^2}}} < \frac{1}{{{n^2} - 1}} với mọi n ≥ 2 nên 

A < C = \frac{1}{{{2^2} - 1}} + \frac{1}{{{3^2} - 1}} + ... + \frac{1}{{{n^2} - 1}}

Mặt khác:

\begin{matrix} C = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}} \hfill \\ C = \dfrac{1}{2}\left( {\dfrac{1}{1} - \dfrac{1}{3} + \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{3} - \dfrac{1}{5} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right) \hfill \\ C = - \left( {1 + \dfrac{1}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right) < \dfrac{1}{2}.\dfrac{3}{2} = \dfrac{3}{4} < 1 \hfill \\ \end{matrix}

Vậy A < 1

25 tháng 5 2021

b.

\begin{matrix} B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{\left( {2n} \right)}^2}}} \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + .... + \dfrac{1}{{{n^2}}}} \right) \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + A} \right) \hfill \\ \end{matrix}

\(\Rightarrow P< 0,5\)

20 tháng 11 2017

Theo đề bài ta được:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a^2+ac}{c^2-ac}=\dfrac{a\left(a+c\right)}{c\left(c-a\right)}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{bk\left[k\left(b+d\right)\right]}{dk\left[k\left(d-b\right)\right]}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(1\right)\)

\(\dfrac{b^2+bd}{d^2-bd}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(2\right)\)

Từ (1) và (2) suy ra:\(\dfrac{a^2+ac}{c^2-ac}=\dfrac{b^2+bd}{d^2-bd}\)

20 tháng 11 2017

Thanks!

NM
1 tháng 9 2021

ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) Vậy A<1

b. \(4B=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}=1+A< 2\Rightarrow B< 0.5\)

1 tháng 11 2019

Cái đề bài chuẩn CMNR.^^

6 tháng 7 2024

Đề bài bị lỗi rồi em nhé.