K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

16 tháng 12 2023

a: ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Ta có: BHCKlà hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

14 tháng 12 2023

a, Ta có:

- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.

- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.

- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.

 

b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.

- Vì M là trung điểm của BC, nên BM = MC.

- Ta có BHCK là hình bình hành, nên BH = CK.

- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.

- Từ đó, ta có BM = MC = HM = KM.

- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.

 

Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.

29 tháng 5 2018

a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC    (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC