K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Quan sát đồ thị:

điểm \(\left( {1; - 2} \right)\) (tức là có x =1; y=-2) thuộc đồ thị.

điểm \(\left( {2; - 1} \right)\) (tức là có x=2; y=-1) thuộc đồ thị hàm số.

điểm (0;0) không thuộc đồ thị hàm số.

b) Từ điểm trên Ox: \(x = 0\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 0 \right) =  - 1\)

Từ điểm trên Ox: \(x = 3\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 3 \right) = 0\)

c) Giao điểm của đồ thị và trục Ox là điểm \(\left( {3;0} \right)\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi B(x; y) là vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.

Do tàu khởi hành từ A đi chuyển với vận tốc được biểu thị bởi vectơ \(\overrightarrow v  = \left( {3;4} \right)\) nên cứ sau mỗi giờ, tàu đi chuyển được một quãng bằng \(\left| {\overrightarrow v } \right|\).

Vậy sau 1,5 giờ tàu di chuyển tới B, ta được: \(\overrightarrow {AB}  = 1,5.\overrightarrow v \)

 \(\begin{array}{l} \Leftrightarrow (x - 1;y - 2) = 1,5\;.\left( {3;4} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 4,5\\y - 2 = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5,5\\y = 8\end{array} \right.\end{array}\)

Vậy sau 1,5 tàu ở vị trí (trên mặt phẳng tọa độ) là B(5,5; 8).

5 tháng 1 2018

x   ≈   y   =   8 , 4   đ i ể m ,   s 1 2   >   s 2 2 , như vậy mức độ phân tán cuẩ các điểm số (so với số trung bình) của xạ thủ A là bé hơn. Vì vậy, trong lần tập bắn này, xạ thủ A bắn chụm hơn.

14 tháng 5 2017

Điểm số của xạ thủ A có:

x   ≈   8 , 3   đ i ể m ,   s 1 2 ≈   1 , 6 ;   s 1   ≈   1 , 27 .

Điểm số của xạ thủ B có

y   ≈   8 , 4   đ i ể m ,   s 2 2 ≈   1 , 77 ;   s 2   ≈   1 , 27 .

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a)

+) Thay tọa độ \(\left( { - 1; - 2} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\( - 2 =  - 2.{\left( { - 1} \right)^2}\)(Đúng)

=> \(\left( { - 1; - 2} \right)\) thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {0;0} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(0 =  - {2.0^2}\)(Đúng)

=> \(\left( {0;0} \right)\) thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {0;1} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(1 =  - {2.0^2} \Leftrightarrow 1 = 0\)(Vô lí)

=> \(\left( {0;1} \right)\) không thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {2021;1} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(1 =  - {2.2021^2}\)(Vô lí)

=> \(\left( {2021;1} \right)\) không thuộc đồ thị hàm số \(y =  - 2{x^2}\).

b)

+) Thay \(x =  - 2\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - 2.{\left( { - 2} \right)^2} =  - 8\)

+) Thay \(x = 3\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - {2.3^2} =  - 18\)

+) Thay \(x = 10\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - 2.{\left( {10} \right)^2} =  - 200\)

c) Thay \(y =  - 18\) vào hàm số \(y =  - 2{x^2}\) ta được:

\( - 18 =  - 2{x^2} \Leftrightarrow {x^2} = 9 \Leftrightarrow x =  \pm 3\)

Vậy các điểm có tọa độ (3;-18) và (-3;-18) thuộc đồ thị hàm số có tung độ bằng -18.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)