Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{117}{12}-\frac{2}{12}=\frac{115}{12}\)
b)\(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-\frac{3}{2}=\frac{13}{4}-\frac{6}{4}=\frac{7}{4}\)
c)\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}=\frac{1}{2004}\)
a. \(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{39}{4}-\frac{1}{6}=\frac{115}{12}\)
b. \(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-1\frac{1}{2}\)
= \(\frac{13}{4}.1-\frac{3}{2}=\frac{13}{4}-\frac{3}{2}=\frac{7}{4}\)
c. \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2004}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}=\frac{1}{2004}\)
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~