![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)
b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)
c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)
d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)
e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)
f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (5x-y)2 = (5x)2 - 2.5x.y + y2 = 25x2 - 10xy +y2
b) (2x + y2 )3 = (2x)3 - 3.(2x)2.y2 + 3.2x.(y2)2 - (y2)3 = 8x3 - 12x2y2 + 6xy4 - y6
c) (x + \(\dfrac{1}{4}\))2 = x2 + 2.x.\(\dfrac{1}{4}\) + (\(\dfrac{1}{4}\))2 = x2 + \(\dfrac{1}{2}\).x + \(\dfrac{1}{16}\)
d) (\(\dfrac{2}{3}\)x2 - \(\dfrac{1}{2}\)y)3 = (\(\dfrac{2}{3}\)x2)3 - 3.(\(\dfrac{2}{3}\)x2)2. \(\dfrac{1}{2}\)y + 3.\(\dfrac{2}{3}\)x2. ( \(\dfrac{1}{2}\)y)2 - (\(\dfrac{1}{2}\)y)3
= \(\dfrac{8}{27}\)x6 - \(\dfrac{2}{3}\)x4y + \(\dfrac{1}{2}\)x2y2 - \(\dfrac{1}{8}\)y3
câu b) của bạn làm sai rồi. hằng đẳng thức số 4 là : (A+B)3= A3+3A2B+3AB2+B3
sửa lại:
(2x+y2)3=2x3+3.(2x)2.y2+3.2x.(y2)2+(y2)3=8x3+12x2y2+6xy4+y6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(xy\left(x+y\right)-x^2\left(x+y\right)-y^2\left(x-y\right)\)
\(=x^2y+xy^2-x^3-x^2y-xy^2+y^3\)
\(=y^3-x^3\)
b, \(x^2-x^2\left(5x+1\right)+x\left(x-3\right)\)
\(=x^2-5x^3-x^2+x^2-3x\)
\(=-5x^3+x^2-3x\)
Chúc bạn học tốt!!!
c, \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2-5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=-10x^2-11x+24\)
d, \(\dfrac{1}{2}\left(x+4\right)+\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)\)
\(=\dfrac{1}{2}x+2+3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x\)
\(=-x^3+\left(3x^2-\dfrac{3}{2}x^2\right)+\left(\dfrac{1}{2}x-\dfrac{1}{2}x\right)+2\)
\(=-x^3+\dfrac{3}{2}x^2+2\)
\(=-\left(x^3-\dfrac{3}{2}x^2-2\right)=-\left(x^3-2x^2+\dfrac{1}{2}x^2-x+x-2\right)\)
\(=-\left[\left(x^3-2x^2\right)+\left(\dfrac{1}{2}x^2-x\right)+\left(x-2\right)\right]\)
\(=-\left[x^2.\left(x-2\right)+\dfrac{1}{2}x.\left(x-2\right)+\left(x-2\right)\right]\)
\(=-\left[\left(x-2\right).\left(x^2+\dfrac{1}{2}x+1\right)\right]\)
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(e,\)
\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)
\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)
\(f,\)
\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)
\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)
\(g,\)
\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)
\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=3x\left(10x^2-2x+1\right)-6x\left(5x^2-x-2\right)\)
\(=30x^3-6x^2+3x-30x^3+6x^2+12x\)
\(=15x\)
Thay \(x=15\) vào biểu thức A.
Ta có: \(15\cdot15=225\)
Vậy giá trị biểu thức A tại \(x=15\) là 225.
b) \(5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2\)
Thay \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) vào biểu thức B.
Ta có: \(5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2=-\dfrac{4}{5}\)
Vậy giá trị biểu thức B tại \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) là \(-\dfrac{4}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)
\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)
\(\Leftrightarrow2x-x^2+3=3\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)
b)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Mà x,yEN*=>x-y-1<x+y+3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy ...
a)\(25x^2-10x+y^2\)
b)\(\dfrac{1}{16}+\dfrac{1}{2}y+y^2\)