K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(\left(x+5\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=10\\x+5=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-15\end{matrix}\right.\)

Vậy: \(x\in\left\{5;-15\right\}\)

b) Ta có: \(\left(2x-4\right)^2=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2

c) Ta có: \(\left(x-1\right)^3=27\)

\(\Leftrightarrow x-1=3\)

hay x=4

Vậy: x=4

29 tháng 4 2020

Cảm ơn anh nhiều ạ,chiều nay hok trực tuyến mà ko lm đc,may mà có anh gp em

NV
15 tháng 4 2022

Do \(x;y\in\left[0;2\right]\Rightarrow\left\{{}\begin{matrix}x\left(2-x\right)\ge0\\y\left(2-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow2x^2+4y^2\le4x+8y\)

\(P\le3^0+5^0+3^z+4\left(x+2y\right)=2+3^z+4\left(6-z\right)=3^z-4z+26\)

Xét hàm \(f\left(z\right)=3^z-4z+26\) trên \(\left[0;2\right]\)

\(f'\left(z\right)=3^z.ln3-4=0\Rightarrow z=log_3\left(\dfrac{4}{ln3}\right)=a\)

\(f\left(0\right)=27\) ; \(f\left(2\right)=27\)\(f\left(a\right)\approx-1,1\)

\(\Rightarrow f\left(z\right)\le27\Rightarrow maxP=27\)

(Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;2;2\right)\))

NV
15 tháng 4 2022

Ồ mà khoan, bài trước bị nhầm lẫn ở chỗ \(3^{2x-x^2}+5^{2y-y^2}\ge3^0+5^0\) mới đúng, ko để ý bị ngược dấu đoạn này

Vậy giải cách khác:

\(0\le x;y;z\le2\Rightarrow x\left(2-x\right)\ge0\Rightarrow2x-x^2\ge0\)

Lại có: \(2x-x^2=1-\left(x-1\right)^2\le1\)

\(\Rightarrow0\le2x-x^2\le1\)

Tương tự ta có: \(0\le2y-y^2\le1\)

Xét hàm: \(f\left(t\right)=3^t-2t\) trên \(\left[0;1\right]\)

\(f'\left(t\right)=3^t.ln3-2=0\Rightarrow t=log_3\left(\dfrac{2}{ln3}\right)=a\)

\(f\left(0\right)=1;\) \(f\left(1\right)=1\) ; \(f\left(a\right)\approx0,73\)

\(\Rightarrow f\left(t\right)\le1\Rightarrow3^t-2t\le1\Rightarrow3^t\le2t+1\)

\(\Rightarrow3^{2x-x^2}\le2\left(2x-x^2\right)+1\)

Hoàn toàn tương tự, ta chứng minh được: 

\(5^t\le4t+1\) với \(t\in\left[0;1\right]\Rightarrow5^{2y-y^2}\le4\left(2y-y^2\right)+1\)

\(3^t\le4t+1\) với \(t\in\left[0;2\right]\Rightarrow3^z\le4z+1\)

\(\Rightarrow P\le2\left(2x-x^2\right)+4\left(2y-y^2\right)+4z+3+2x^2+4y^2=4\left(x+2y+z\right)+3=27\)

Lần này thì ko sai được rồi

13 tháng 5 2022

`2x-2/3=1/2`

`2x=1/2+2/3`

`2x=7/6`

`x=7/6:2=7/12`

13 tháng 5 2022

\(2x-\dfrac{2}{3}=\dfrac{1}{2}\Leftrightarrow2x=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\Leftrightarrow x=\dfrac{7}{6}:2=\dfrac{7}{12}\)

4 tháng 2 2020

a/ \(-12\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x+81=5\)

\(< =>-19x=-76\)

\(< =>x=\frac{76}{19}\)

b/ 30(x+2)-6(x-5)-24x=100

<=>30x + 60 - 6x + 30 - 24x =100

<=> 90=100( vô lý)

c/ \(\left(x-1\right)\left(x^2+1\right)=0\)

\(< =>\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}< =>\hept{\begin{cases}x=1\\x^2=-1\left(voly\right)\end{cases}}\)

d/ làm rồi mà

4 tháng 2 2020

a. \(-12.\left(x-5\right)+7.\left(3-x\right)=5\)

             \(-12x+60+21-7x=5\)

                                    \(-19x+81=5\)

                                                \(-19x=-76\)

                                                         \(x=4\)

b. \(30.\left(x+2\right)-6.\left(x-5\right)-24x=100\)

            \(30x+60-6x+30-24x=100\)

\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)

                                                                 \(90=100\)(vô lí)

                                                              \(\Rightarrow x=\varnothing\)

c. \(\left(x-1\right)\left(x^2+1\right)=0\)

 \(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(loại\right)\end{cases}}}\)

 \(\Rightarrow x=1\)

Câu d) chính là câu a) :D

25 tháng 3 2020

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

NV
3 tháng 7 2020

Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)

Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)

Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))

Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)

\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)

Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)

M là giao điểm (Q) và d1 nên tọa độ M là ...

N là giao điểm (Q) và d2 nên tọa độ N là ...

Đề thi học sinh giỏi toán lớp 6 Bài 1: a, Cho A=12n+1/2n+3. Tìm số nguyên n để A thuộc Z. b, Tính P= -1/20 +(-1)/30 + (-1)/42 + (-1)/56 + (-1)/72 + (-1)/90 Bài 2: a, So sánh P và Q biết P= 2010/2011+2011/2012+2012/2013 Q=2010+2011+2012/2011+2012+2013 b, Tìm x thuộc Z biết: (7x-11)^3=2^5.5^2+200 Bài 3: a, Tìm các chữ số a, b, c khác 0 thoả mãn abbc=ab.ac.7 b, Tìm các số tự nhiên x, y biết x-4/y-3=4/3 và x-y=4 c, Tìm các số nguyên tố P để...
Đọc tiếp

Đề thi học sinh giỏi toán lớp 6

Bài 1: a, Cho A=12n+1/2n+3. Tìm số nguyên n để A thuộc Z.

b, Tính P= -1/20 +(-1)/30 + (-1)/42 + (-1)/56 + (-1)/72 + (-1)/90

Bài 2: a, So sánh P và Q biết P= 2010/2011+2011/2012+2012/2013

Q=2010+2011+2012/2011+2012+2013

b, Tìm x thuộc Z biết: (7x-11)^3=2^5.5^2+200

Bài 3: a, Tìm các chữ số a, b, c khác 0 thoả mãn abbc=ab.ac.7

b, Tìm các số tự nhiên x, y biết x-4/y-3=4/3 và x-y=4

c, Tìm các số nguyên tố P để 2^P+P^2 là số nguyên tố.

Bài 4: Rút gọn: A=(1 - 1/5)(1 - 2/5)............(1 - 9/5)

B= (1 - 1/2)(1 - 1/3)............(1 - 1/50)

C=2^2/1.3 . 3^2/2.4 . 4^2/3.5 . 5^2/4.6 . 6^2/5.7

Bài 5: a, Tìm các chữ số a, b thoả mãn ab4 chia 4ab bằng 3/4

b, CMR: M=1/2^2 + 1/3^2 + 1/4^2 +..........................+1/100^2<1

c, CMR: 1/26 + 1/27 +........................+1/50=1 - 1/2 + 1/3 - 1/4 + 1/5-........................+ 1/49 -1/50

0
10 tháng 6 2021

\(a=-1;b=0\)

\(c=0;d=-3\)

\(R=\sqrt{12+3^2}=2\)

\(\Rightarrow C\)

-Chúc bạn học tốt-

 

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5) biết x,y,z,u\(\ge0\)và...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3