K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm

Làm bài 1 trước

\(4\cdot(-5)^2+2\cdot(-5)-20\)

\(=4\cdot25+2\cdot(-5)-20\)

\(=100+(-10)-20=100-30=70\)

\(35\cdot(14-10)-14\cdot(35-10)\)

\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)

\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)

\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)

\(3\cdot(-5)^2+2\cdot(-5)-20\)

Tương tự như ở câu trên

\(34\cdot(15-10)-15\cdot(34-10)\)

Tương tự như câu thứ 2

Câu cuối tự làm

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bài 1: Thay 1 thừa số bằng tổng để tính:a) 250. (-21)        c) (-23). 101         d) 31. (-99)e) (-25). (-11)       f) 101. (-99)         g) (-35). 101          h) 50. (-21)Bài 2: Tính:  a) (43-13) . (-3)+ 27(-14-16)          b) (-72). (34-12) - 34 (12-72)c, (34-14). (-5)+ 15.(-14-6)            d) (-42). (35-16) - 35(16-42)Bài 4: tính nhanh:a) (-127). (1-582) -582. 127        b) (-4).25. (-25). (-5). (-4) Bài 5: Tìm x thuộc Z,...
Đọc tiếp

Bài 1: Thay 1 thừa số bằng tổng để tính:
a) 250. (-21)        c) (-23). 101         d) 31. (-99)

e) (-25). (-11)       f) 101. (-99)         g) (-35). 101          h) 50. (-21)

Bài 2: Tính:  

a) (43-13) . (-3)+ 27(-14-16)          b) (-72). (34-12) - 34 (12-72)

c, (34-14). (-5)+ 15.(-14-6)            d) (-42). (35-16) - 35(16-42)

Bài 4: tính nhanh:

a) (-127). (1-582) -582. 127        b) (-4).25. (-25). (-5). (-4) 

Bài 5: Tìm x thuộc Z, biết:

a, x(x-6)= 0        b, x(x+5) =0 

c,(x-3)(x2+12) =0       d,(x+1)(x-3) =0

e, (x+1)(x+1)= 0      f, 42.|x| =84     2.|x| +5= 35-10

Bài 7:So sánh với 0

a, (-1).(-2).....(-19) với 0

Bài 8: a, tìm tất cả các ước của -6;9;12;-7;-196

b,Các số sau có bao nhiêu ước :54; -166

Bài 9: tìm x thuộc Z sao cho:

a) 6 chia hết cho x        b, 8  chia hết cho x +1       c, 10 chia hết cho x-2d, x+6

chia hết cho x     e, x+9 chia hết cho x+1     f, 2x +1 chia hết cho x-1

Bài 10: a, Tìm các số nguyên x,y sao cho (x-13)(y+2)= 13

b,Tìm các số nguyên x,y sao cho (x-13)(y+2)= 5

c, tìm các số nguyên x biết tổng của 54;(-8) và x bằng tích của 3 và x

mọi ngừi ơi giải giúp mik đi mai phải nộp òi fighting!!!^^

2
16 tháng 1 2020

các bạn bỏ bài 1 nha mik bít lm bài đó rùi có ai bít lm kooo huhu*^^

20 tháng 1 2020

a) (43 - 13) . (- 3) + 27(- 14 - 16)

= 30 . (- 3) + 27(- 30)

= 30 . (- 3) + (- 27) . 30

= 30 . [(- 3) + (- 27)]

= 30 . (- 30)

= - 90

Đề thi kiểm tra thực lực 45'Trắc NghiệmBài 1: Thực hiện các phép tính rồi phân tích các kết quả ra thừa số nguyên tố.a, 160 – ( 23 . 52 – 6 . 25 ) b, 4 . 52 – 32 : 24c, 5871 : [ 928 – ( 247 – 82 . 5 ) d, 777 : 7 +1331 : 113Bài 2: Thực hiện phép tính rồi phân tích kết quả ra thừa số nguyên tố:a, 62 : 4 . 3 + 2 .52 b, 5 . 42 – 18 : 32Bài 3:...
Đọc tiếp

Đề thi kiểm tra thực lực 45'

Trắc Nghiệm

Bài 1: Thực hiện các phép tính rồi phân tích các kết quả ra thừa số nguyên tố.

a, 160 – ( 23 . 52 – 6 . 25 ) b, 4 . 52 – 32 : 24

c, 5871 : [ 928 – ( 247 – 82 . 5 ) d, 777 : 7 +1331 : 113

Bài 2: Thực hiện phép tính rồi phân tích kết quả ra thừa số nguyên tố:

a, 62 : 4 . 3 + 2 .52 b, 5 . 42 – 18 : 32

Bài 3: Thực hiện phép tính:

a, 80 - (4 . 52 – 3 .23) b, 23 . 75 + 25. 23 + 180

c, 24 . 5 - [131 – ( 13 – 4 )2] d, 100 : { 250 : [ 450 – ( 4 . 53- 22. 25)]}

Tự luận

Bài 4: Tìm số tự nhiên x, biết:

a, 128 – 3( x + 4 ) = 23 b, [( 4x + 28 ).3 + 55] : 5 = 35

c, (12x – 43).83 = 4.84 d, 720 : [ 41 – ( 2x – 5 )] = 23.5

Bài 5: Tìm số tự nhiên x, biết:

a, 123 – 5.( x + 4 ) = 38 b, (3x – 24) .73 = 2.74

Bài 6: Tìm số tự nhiên x, biết rằng nếu nhân nó với 5 rồi cộng thêm 16, sau đó chia cho 3 thì được 7.

Bài 7: Tìm số tự nhiên x, biết rằng nếu chia nó với 3 rồi trừ đi 4, sau đó nhân với 5 thì được 15.

Bài 8: Tìm số tự nhiên x, biết rằng:

a, 70 chia hết cho x , 84 chia hết cho x và x > 8.

b, x chia hết cho 12, x chia hết cho 25, x chia hết cho 30 và 0 < x < 500

Bài 9: Tìm số tự nhiên x sao cho:

a, 6 chia hết cho (x – 1) b, 14 chia hết cho (2x +3).

Chúc các bạn thành công ^_^ haha

4
13 tháng 1 2017

kiểm tra thực lực thì bạn phải làm chứ bạn! Kiểm tra năng lực học của bạn như thế nào nữa!

14 tháng 11 2016

các bạn làm rồi cho mik xem thử nhá tại mik cũng đang ôn mí dạng này

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

Gấp các bn oi

1
25 tháng 8 2021

Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0