\(^{x^2}\)-0.25=0

\(\dfrac{8}{2x}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

\(x^2-0,25=0\)

\(\Leftrightarrow x^2-0,5^2=0\)

\(\Leftrightarrow x-0,5=0\)

\(\Leftrightarrow x=0+0,5\)

\(\Leftrightarrow x=0,5\)

b.

\(\dfrac{8}{2x}=2\Leftrightarrow2x=\dfrac{8}{2}\Rightarrow x=4:2=2\)

c.

\(\left(2x-1\right)^3=8\)

\(\Rightarrow\left(2x-1\right)^3=2^3\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=2+1\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

d.

\(\left(x-2\right)^2=16\)
\(\Rightarrow\left(x-2\right)^2=4^2\)

\(\Rightarrow x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Chúc bạn học tốt!!!!

21 tháng 8 2017

\(x^2-0,25=0\)

\(\Rightarrow x^2=0,25\)

\(\Rightarrow x=0,5\)

b. \(\dfrac{8}{2x}=2\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

c. \(\left(2x-1\right)^3=8\)

\(\left(2x-1\right)^3=2^3\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow x=\dfrac{3}{2}\)

d. \(\left(x-2\right)^2=16\)

\(\left(x-2\right)^2=\pm4^2\)

\(\Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

23 tháng 4 2017

9) \(\dfrac{x}{4}=\dfrac{9}{x}\)

Theo định nghĩa về hai phân số bằng nhau, ta có:

\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

8)

\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)

7)

\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)

6)

\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)

5)

\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)

4)

\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

3)

\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)

2)

\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)

1)

\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)

3 tháng 7 2017

Bài 2:

a) \(\left(x-3\right)^3+27=0\)

\(\Leftrightarrow\left(x-3\right)^3=0-27\)

\(\Leftrightarrow\left(x-3\right)^3=-27\)

\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=\left(-3\right)+3\)

\(\Leftrightarrow x=0\)

b) \(-125-\left(x+1\right)^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=-125-0\)

\(\Leftrightarrow\left(x+1\right)^3=-125\)

\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x+1=-5\)

\(\Leftrightarrow x=\left(-5\right)-1\)

\(\Leftrightarrow x=-6\)

c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow2x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{1}{2}:2\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

d) \(2^x+2^{x+1}=24\)

\(\Leftrightarrow2^x+2^x.2=24\)

\(\Leftrightarrow2^x\left(1+2\right)=24\)

\(\Leftrightarrow2^x.3=24\)

\(\Leftrightarrow2^x=24:3\)

\(\Leftrightarrow2^x=8\)

\(\Leftrightarrow2^x=2^3\)

\(\Rightarrow x=3\)

e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)

\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)

g) \(\left|x-3\right|+2x=10\)

\(\Leftrightarrow\left|x-3\right|=10-2x\)

\(\Leftrightarrow\left|x-3\right|=2.5-2x\)

\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)

(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)

3 tháng 7 2017

Bài 1:

a) \(2^7+2^9⋮10\)

Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)

\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)

\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)

\(\Leftrightarrow\overline{C8}+\overline{D2}\)

\(\Leftrightarrow\overline{E0}\)

\(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)

b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)

Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)

\(\Leftrightarrow2^{72}.5^{20}\)

Do \(2^{72}⋮2^{36}\)\(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)

c) \(3^{10}+3^{12}⋮30\)

Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)

\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)

\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)

\(\Leftrightarrow\overline{C9}+\overline{B1}\)

\(\Leftrightarrow\overline{D0}⋮10\)

(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)

8 tháng 8 2017

a,

\(\left(x-\dfrac{1}{2}\right)^2=0\\ \Rightarrow x-\dfrac{1}{2}=0\\ \Rightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b,

\(\left(x-2\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy \(x=3\text{ hoặc }x=1\)

c,

\(\left(2x-1\right)^3=-8\\ \Rightarrow2x-1=-2\\ \Rightarrow2x=-1\\ \Rightarrow x=\dfrac{-1}{2}\)

Vậy \(x=\dfrac{-1}{2}\)

d,

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)

Vậy \(x=\dfrac{-1}{4}\text{ hoặc }x=\dfrac{-3}{4}\)

8 tháng 8 2017

a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow\left(x-\dfrac{1}{2}\right)^2=0^2\)

\(\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b) \(\left(x-2\right)^2=1\Rightarrow\left(x-2\right)^2=1^2\)

\(\Rightarrow\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1+2\\x=1+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

c) \(\left(2x-1\right)^3=-8\Rightarrow\left(2x-1\right)^3=-2^3\)

\(\Rightarrow2x-1=-3\Rightarrow2x=-3+1\)

\(\Rightarrow2x=2\Rightarrow x=1\)

Vậy \(x=1\)

d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}-\dfrac{1}{2}\\x=\dfrac{1}{4}-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

2 tháng 5 2017

6. \(\dfrac{x}{4}=\dfrac{9}{x}\)

=>x2=4.9=36

=>x\(\in\)\(\left\{-6;6\right\}\)

27 tháng 8 2023

\((\dfrac{2x}{5}+2):\left(-4\right)=-1\dfrac{1}{2}\) 

(\(\dfrac{2x}{5}+2):\left(-4\right)=-\dfrac{3}{2}\) 

\(\dfrac{2x}{5}=-\dfrac{3}{2}.\left(-4\right)\) 

\(\dfrac{2x}{5}=6\) 

\(\dfrac{2x}{5}=\dfrac{30}{5}\) 

2x = 30 

x = 30 : 2 = 15

1 tháng 3 2020

a) \(2^{4x+1}-8^{x+2}=0\)\(\Leftrightarrow2^{4x+1}-2^{3\left(x+2\right)}=0\)

\(\Leftrightarrow2^{4x+1}-2^{3x+6}=0\)\(\Leftrightarrow2^{4x+1}=2^{3x+6}\)

\(\Leftrightarrow4x+1=3x+6\)\(\Leftrightarrow4x-3x=6-1\)\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(3^2.9^{2x}=27^{x+3}\)\(\Leftrightarrow3^2.3^{2.2x}=3^{3\left(x+3\right)}\)\(\Leftrightarrow3^2.3^{4x}=3^{3x+9}\)

\(\Leftrightarrow3^{2+4x}=3^{3x+9}\)\(\Leftrightarrow2+4x=3x+9\)\(\Leftrightarrow4x-3x=9-2\)\(\Leftrightarrow x=7\)

Vậy \(x=7\)

c) \(8^{2x}.64^2=16^{x+4}\)\(\Leftrightarrow2^{3.2x}.2^{6.2}=2^{4\left(x+4\right)}\)\(\Leftrightarrow2^{6x}.2^{12}=2^{4\left(x+4\right)}\)

\(\Leftrightarrow2^{6x+12}=2^{4x+16}\)\(\Leftrightarrow6x+12=4x+16\)\(\Leftrightarrow6x-4x=16-12\)

\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

a: =>2x+7/2=16/3:8/3=2

=>2x=-3/2

hay x=-3/4

b: =>8/3x=3+1/3+8+2/3=12

=>x=12:8/3=12x3/8=36/8=9/2

c: =>2x=-2/13

hay x=-1/13

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
11 tháng 4 2017

\(\dfrac{-2}{3}\cdot\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)

\(-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\\ -\dfrac{2}{3}x+\dfrac{1}{6}-\dfrac{2}{3}x+\dfrac{1}{3}=0\)

\(-\dfrac{4}{3}x+\dfrac{1}{2}=0\\ -\dfrac{4}{3}x=-\dfrac{1}{2}\\ x=\dfrac{3}{8}\)

\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^{x+1}=\dfrac{1}{5}2^7+\dfrac{1}{3}2^8\)

\(\dfrac{1}{5}2^x+\dfrac{1}{3}2^x\cdot2=\dfrac{1}{5}2^7+\dfrac{1}{3}2^7\cdot2\)

\(2^x\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)=2^7\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)\)

\(2^x=2^7\\ x=7\)

2 tháng 5 2017

a) \(\left(2x-3\right)\left(6-2x\right)=0\)

\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)

\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)

Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)

\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)

\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)

\(-\dfrac{11}{15}=-x\left(x-1\right)\)

\(\Rightarrow x=1.491631652\)

Vậy \(x=1.491631652\)

c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)

\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)

\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)

Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).

d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)

Vậy \(x=\dfrac{10}{3}\).

e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)

\(\dfrac{x}{3}=\dfrac{7}{10}\)

\(x=\dfrac{3\cdot7}{10}\)

\(x=\dfrac{21}{10}\)

Vậy \(x=\dfrac{21}{10}\).

f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)

\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)

\(\dfrac{x}{5}=\dfrac{11}{10}\)

\(x=\dfrac{5\cdot11}{10}\)

\(x=\dfrac{55}{10}=\dfrac{11}{2}\)

Vậy \(x=\dfrac{11}{2}\).

g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)

Vậy \(x=2\).

h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)

Vậy \(x=14\).