K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Bài 1:

Vì vế trái dương \(\Rightarrow\) x \(\ge\) 0

Xét 2 TH:

TH1: 2x + 1 + 1 - x = 5x với 0 \(\le\) x \(\le\) 1

\(\Rightarrow\) x + 2 = 5x

\(\Rightarrow\) 4x = 2

\(\Rightarrow\) x = \(\frac{1}{2}\) (TM)

TH2: 2x + 1 + x - 1 = 5x với x > 1

\(\Rightarrow\) 3x = 5x

\(\Rightarrow\) 2x = 0

\(\Rightarrow\) x = 0 (KTM)

Vậy x = \(\frac{1}{2}\)

Chúc bn học tốt! (Ko chắc lắm đâu)

2 tháng 10 2020

kcj Nguyễn Giang :)

25 tháng 8 2018

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'

Do đó không tồn tại x,y trái dấu và không đối nhau

Vậy ...

25 tháng 8 2018

Ta dùng pháp phản chứng:   

Giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}\)\(\frac{y+x}{xy}\)  <=> \(\left(x+y\right)^2\)  = xy

Điều này vô lí vì  \(\left(x+y\right)^2\)  > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.

6 tháng 9 2016

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

6 tháng 9 2016

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

2 tháng 7 2017

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

21 tháng 1 2015

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)

=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu 

Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho

1) Đặt thành thừa số chung:a) xy+x+8y+8b)\(x^2-x-\frac{2}{3}x+\frac{2}{3}\)c) x2-1 ( * gợi ý: thêm bớt cùng 1 số x để làm xuất hiện thừa số chung)2) Tìm các giá trị của x để các biểu thức sau có giá trị dươnga) A= x2+4xb)(x-3)(x+7)c) \(\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)\)3) Tìm các giá trị của x để các biểu thức sau có giá trị âm:a) D= \(x^2-\frac{2}{5}x\)b) E= \(\frac{x-2}{x-6}\)c)...
Đọc tiếp

1) Đặt thành thừa số chung:

a) xy+x+8y+8

b)\(x^2-x-\frac{2}{3}x+\frac{2}{3}\)

c) x2-1 ( * gợi ý: thêm bớt cùng 1 số x để làm xuất hiện thừa số chung)

2) Tìm các giá trị của x để các biểu thức sau có giá trị dương

a) A= x2+4x

b)(x-3)(x+7)

c) \(\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)\)

3) Tìm các giá trị của x để các biểu thức sau có giá trị âm:

a) D= \(x^2-\frac{2}{5}x\)

b) E= \(\frac{x-2}{x-6}\)

c) F= \(\frac{x^2-1}{2^2}\)

4) CMR không tồn tại 2 số hữu tir x và y trái dấu , không đối nhau thỏa mãn đẳng thức:  \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

5) TÌm 2 số hữu tỉ x và y,( y khác 0), biết rằng:   x-y=xy=x:y

6) Cho 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là 1 số âm. CMR:

a) Tích của 100 số đó là 1 số dương.

b) Tất cả 100 số đều là số âm.

4
28 tháng 6 2015

6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm

Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số 

=> kết quả mỗi nhóm là số âm

=> Tích của 99 số là tích của 33 số âm => kết quả là số âm

Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương

28 tháng 6 2015

Bạn nên đăng từng bài lên thôi.

27 tháng 5 2015

ta dùng pháp phản chứng  

giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy

điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)

vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài

 

27 tháng 5 2015

\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}

=>\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}

=>\frac{1}{x+y}=\frac{x+y}{xy}

=>(x+y)^2 = xy

mà (x+y)^2 \geq 0

=> xy \geq 0 => ko tồn tại x,y trái dấu

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)