K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

3 tháng 7 2019

a)  (2a - b)(b + 4a) + 2a(b - 3a)
= 2a(b + 4a) - b(b + 4a) + 2ab - 6a^2
= 2ab + 8a^2 - b^2 - 4ab + 2ab - 6a^2
= (8a^2 - 6a^2) + (2ab + 2ab - 4ab) - b^2
= 2a^2 - b^2
b) .(3a - 2b)(2a - 3b) - 6a(a - b)
= 3a(2a - 3b) - 2b(2a - 3b) - (6a^2 - 6ab)
= 6a^2 - 9ab - (4ab - 6b^2) - (6a^2 - 6ab)
= 6a^2 - 9ab - 4ab + 6b^2 - 6a^2 + 6ab
= 6b^2 + (6a^2 - 6a^2) + (6ab - 4ab - 9ab)
= 6b^2 - 7ab

c. 5b(2x - b) - (8b - x)(2x - b)
= 10bx - 5b^2 - 8b(2x - b) + x(2x - b)
= 10bx - 5b^2 - 16bx + 8b^2 + 2x^2 - bx
= (10bx - 16bx - bx) + 2x^2 + (8b^2 - 5b^2)
= -7bx + 2x^2 + 3b^2
d. 2x(a + 15x) + (x - 6a)(5a + 2x)
= 2ax + 30x^2 + x(5a + 2x) - 6a(5a + 2x)
= 2ax + 30x^2 + 5ax + 2x^2 - 30a^2 - 12ax
= (30x^2 + 2x^2) + (2ax + 5ax - 12ax) - 30a^2
= 32x^2 - 5ax - 30a^2

Chúc bạn hok tốt !!!

4 tháng 9 2019

1) (a+2b+1)2

=a2+2a(2b+1)+(2b+1)2

=a2+4ab+2a+(2b)2+2.2b.1+12

=a2+4ab+2a+4b2+4b+1

2) (2a-b+3)2

=(2a)2 -2.2a(b-3)+(b-3)2

=4a2-4a(b-3)+b2-2b.3+32

=4a2-4ab+12a+b2 -6b+9

3) (2a-3b+1)2

=(2a)2-2.2a(3b-1)+(3b-1)2

=4a2-4a(3b-1)+(3b)2-2.3b.1+12

=4a2-4ab+4a+9b2-6b+1

26 tháng 6 2023

a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)

\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)

\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)

\(=2a^2-b^2\)

b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)

\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)

\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)

\(=-7ab+b^2\)

c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)

\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)

\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)

\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)

\(=-7bx+3b^2+2x^2\)

d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)

\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)

\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)

\(=-5ax+32x^2-30a^2\)

a: =2ab+8a^2-b^2-4ab+2ab-6a^2

=2a^2-b^2

b: =6a^2-9ab-4ab+6b^2-6a^2+6ab

=-7ab+6b^2

c: =10bx-5b^2-16bx+8b^2+2x^2-xb

=3b^2+2x^2-7xb

d: =2xa+30x^2+5ax+2x^2-30a^2-12ax

=32x^2-30a^2-5ax

16 tháng 11 2016

Ta có

\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\left(1\right)\)

Ta lại có

\(6a^2-15ab+5b^2=0\)

\(\Leftrightarrow9a^2-b^2=3a^2+15ab-6b^2\left(2\right)\)

Từ (1) và (2) => Q = 1

16 tháng 11 2016

Đề thiếu rồi 

12 tháng 7 2018

\(\left(7x-4\right)\left(2x+3\right)-13x\)

\(=14x^2+21x-8x-12-13x\)

\(=14x^2-12\)

\(a^3-\left(a^2-3a\right)\left(a+3\right)\)

\(=a^3-\left(a^3+3a^2-3a^2-9a\right)\)

\(=a^3-a^3-3a^2+3a^2+9a\)

\(=9a\)

\(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)

\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)

\(=\)\(2a^2-b^2\)

\(5b\left(2x-b\right)+\left(x-6a\right)\left(5a+2x\right)\)

\(=10bx-5b^2+5ax+2x^2-30a^2-12ax\)

\(=2x^2-30a^2-5b^2+10bx-7ax\)

29 tháng 11 2018

\(H=\frac{8a+5b}{5a-1}+\frac{3a+b}{4b+1}\)

\(=\frac{5a+\left(3a+5b\right)}{5a-1}+\frac{3a+b}{4b-\left(3a+5b\right)}\)

\(=\frac{5a-1}{5a-1}+\frac{3a+b}{-3a-b}=1+\left(-1\right)=0\)

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại