Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Tìm GTNN của biểu thức sau: a) A= x^2-2x+y^2+4y+8 b) B= x^2-4x+y^2-8y+6 c) C= x^-4xy+5y^2+10x-22y+28
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
D = (x-1).(x+2).(x+3).(x+6)
= (x2 + 5x - 6).(x2 + 5x + 6)
= (x2 + 5x)2 + 6x.(x2+5x)-6(x2 + 5x) - 36
= (x2 + 5x)2 - 36 \(\ge\) -36 với mọi x
Vậy D có GTNN = - 36 khi x2 + 5x = 0
hay x = 0; x = 5
A = x2 - 2x + y2 + 4y + 8
= (x2 - 2x + 1) + (y2 + 2.2y + 4) + 3
= (x-1)2 + (y+2)2 + 3 \(\ge\) 3 với mọi x,y
Vậy A có GTNN = 3
C = x2 - 4x + y2 - 8y + 6
= (x2 - 4x + 4) + (y2 - 8y + 16) - 12
= (x-2)2 + (y-4)2 - 12 \(\ge\) -12 với mọi x;y
Vậy C có GTNN = -12
B = 2x2 - 4x + 10
= x2 + (x2 - 4x + 4) + 6
= x2 + (x-2)2 + 6 \(\ge\) 6 với mọi x
Vậy B có GTNN = 6
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
a, =[ x^2 - 2x. \(\left(\frac{1}{2}\right)^2\)+\(\left(\frac{1}{2}\right)^2]-\left(\frac{1}{2}\right)^2\)+ 5
= (x^2 - \(\frac{1}{2}\))^2 -\(\frac{1}{4}\)+5
= (x^2 - 1/2)^2 + 19/4 \(\ge\)19/4
Vậy GTNN là 19/4
`@`\(A=x^2+4x+1\)
\(A=x^2+4x+4-3\)
\(A=\left(x+2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi `x+2=0`
`<=>x=-2`
Vậy \(Min_A=-3\) khi `x=-2`
`@`\(B=4x^2-12x-5\)
\(B=4x^2-12x+9-9-5\)
\(B=\left(2x-3\right)^2-14\ge-14\)
Dấu "=" xảy ra khi `2x-3=0`
`<=>x=3/2`
Vậy \(Min_B=-14\) khi `x=3/2`
`@`\(C=x^2-4x+y^2-8y+6\)
\(C=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-4-16+6\)
\(C=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(Min_C=-14\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
A = x2 + 4x + 1
A = x2 + 4x + 4 - 3
A = (x + 2)2 - 3
(x + 2)2 ≥ 0 ⇔ (x+2)2 - 3 ≥ 3 ⇔ A(min) = 3 ⇔ x = -2
B = 4x2 + 12x - 5
B = 4x2 + 12x + 9 - 14
B = (2x + 3)2 - 14
(2x + 3)2 ≥ 0 ⇔ (2x + 3) - 14 ≥ -14 ⇔ B(min)= -14⇔ x =-3/2
C = x2 - 4x + y2 - 8y + 6
C = x2 - 4x + 4 + y2 - 8y + 16 - 14
C = (x - 2)2 + ( y - 4)2 - 14
(x-2)2 + (y-4)2 ≥ 0 ⇔ (x-2)2 + (y-4)2 - 14 ≥ -14
⇔ C(min) = -14 ⇔ x = 2; y = 4