Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) TH1: Ta có: \(A=\left|x-\frac{1}{2}\right|+\frac{3}{4}-x\) \(\left(x\ge0\right)\)
\(=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)
TH2: \(A=\left|x-\frac{1}{3}\right|+\frac{3}{4}-x\) \(\left(x< 0\right)\)
\(=-x+\frac{1}{2}+\frac{3}{4}-x=\frac{5}{4}-2x\)
a)\(A=\left|x+5\right|+2-x\)
*)Xét \(x\ge-5\Rightarrow x+5\ge0\Rightarrow\left|x+5\right|=x+5\)
Khi đó \(A=x+5+2-x=7\)
*)Xét \(x< -5\Rightarrow x+5< 0\Rightarrow\left|x+5\right|=-\left(x+5\right)=-x-5\)
Khi đó \(A=-x-5+2-x=-2x-3\)
b)Ta thấy: GTNN của A=7 khi \(x\ge-5\)
a/ ta có \(A=\hept{\begin{cases}-2x-3\text{ với }x\le-5\\7\text{ với }-5\le x\le2\\2x+3\text{ với }x\ge2\end{cases}}\)
b. ta có bất đằng thức trị tuyệt đối
\(A=\left|x+5\right|+\left|2-x\right|\ge\left|x+5+2-x\right|=7\)
vậy GTNN của A=7 khi \(-5\le x\le2\)
a: \(\left[{}\begin{matrix}A=x-\dfrac{1}{2}+\dfrac{3}{4}-x=\dfrac{1}{2}\\A=\dfrac{1}{2}-x+\dfrac{3}{4}-x=-2x+\dfrac{5}{4}\end{matrix}\right.\)
b: \(A\ge\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x=1/2