K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Bài 1:

c/

\(\left(2x-7\right)^2=18:2\)

\(\left(2x-7\right)^2=9=3^2\)

=>\(2x-7=3\)

=>\(2x=10\)

=>\(x=5\)

 

 

12 tháng 8 2016

Bài 1:

|2x+3|=5

=>2x+3=5 hoặc (-5)

  • Với 2x+3=5

=>2x=2

=>x=1

  • Với 2x+3=-5

=>2x=-8

=>x=-4

 

28 tháng 3 2018

viết cả cách làm nhé!

Bài 1:

a. https://olm.vn/hoi-dap/detail/100987610050.html

b. Giống nhau hoàn toàn => P=Q

Chỉ biết thế thôi

13 tháng 3 2016

a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017

N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017

N = 0 + 0 + ... + 0 + 2017

N = 2017

29 tháng 8 2017

cậu có thể làm dễ hiểu được  ko

29 tháng 5 2018

C3:

Gọi UCLN(12n + 1 ; 30n + 2) là d

Ta có : 12n + 1 \(⋮\)\(\Rightarrow\)5(12n + 1) \(⋮\)\(\Rightarrow\)60n + 5 \(⋮\)d

           30n + 2 \(⋮\)\(\Rightarrow\)2(30n + 2) \(⋮\)\(\Rightarrow\)60n + 4 \(⋮\)d

\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d

\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\subset\){ 1 ; -1 }

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

29 tháng 5 2018

Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố

=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1

Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

2 tháng 9 2018

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

11 tháng 11 2016

A=\(17^{2008}-11^{2008}-3^{2008}\)

A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)

A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)

A=\(\left(.........9\right)\)

Vậy A có chữ số tận cùng là 9

11 tháng 11 2016

2)M=\(17^{25}+24^4-13^{21}\)

M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)

M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)

M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)

M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)

M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)

M=\(\left(...........0\right)⋮10\)

Vậy M\(⋮10\)