K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Trung vị tăng 0,5. Tứ phân vị cũng tăng 0,5.

Khi cộng thêm mỗi môn 0,5 điểm chuyên cần thì điểm trung bình tăng 0,5

=> Độ lệch của mỗi giá trị so với số trung bình vẫn không đổi \(\left( {{x_i} - \overline x} \right)\)

=> Độ lệch chuẩn không thay đổi.

Chọn C.

26 tháng 8 2016

Gọi số đó là abc

Ta có: Khi viết thêm chữ số vào đằng trước thì số đó có dạng: 3abc

Lấy 3abc-abc ta có:

3abc-abc= (3000+abc)-abc

              = 3000+(abc-abc)

              = 3000+0

               = 3000

Vậy nếu viết thêm chữ số 3 vào đằng trước sơ tự nhiên có 3 chữ số thì số đó tăng lên 3000 đơn vị.

26 tháng 8 2016

Gọi một số tự nhiên có 3 chữ số bất kì là \(\overline{abc}\)

=> Khi thêm số 3 phía tước ta được \(\overline{3abc}\)

Nhân xét

\(\overline{3abc}-\overline{abc}=3000\)

Vậy số đó tăng 300 đơn vị

7 tháng 5 2016

Gọi số cần tìm là ab (gạch ngang) , ta có:

ab x 101 = 2ab2

ab x 101 = 2000 + ab x 10 + 2

ab x 101 = 2002 + ab x 10

ab x 101 - ab x 10 = 2002 + ab x 10 - ab x 10

ab x 91 = 2002

Vậy ab = 2002 : 91 = 22

 

7 tháng 5 2016

Gọi số phải tìm là ab có :

ab x 101 =2ab2

abab=2ab2

=>a=2 ;b=2

=>ab=22

=>Số phải tìm là 22

 

24 tháng 9 2023

Tham khảo:

n=10

Giả sử sau khi sắp xếp 10 số dương theo thứ tự không giảm thì được:

=> Trung vị là giá trị trung bình của số thứ 5 và thứ 6.

=> \({Q_1}\) là số thứ 3 và \({Q_3}\) là số thứ 8.

a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì:

+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần

=> R tăng 2 lần

+ \({Q_1}\) và \({Q_3}\) tăng 2 lần

=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) tăng 2 lần.

+ Giá trị trung bình tăng 2 lần

=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) cũng tăng 2 lần

=> \({\left( {{x_i} - \overline x} \right)^2}\) tăng 4 lần

=> Phương sai tăng 4 lần

=> Độ lệch chuẩn tăng 2 lần.

Vậy R tăng 2 lần, khoảng tứ phân vị tăng 2 lần và độ lệch chuẩn tăng 2 lần.

b) Cộng mỗi giá trị của mẫu số liệu với 2 thì

+  Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị

=> R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ \({Q_1}\) và \({Q_3}\) tăng 2 đơn vị

=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ Giá trị trung bình tăng 2 đơn vị

=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

=> \({\left( {{x_i} - \overline x} \right)^2}\) không đổi

=> Phương sai không đổi.

=> Độ lệch chuẩn không đổi.

Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.

21 tháng 11 2017

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

11 tháng 11 2017

Chọn D.

+ Khi ta đổi chỗ 2 giá trị đứng đầu tiên và cuối cùng cho nhau thì tần số của mỗi giá trị không đổi nên giá trị có tần số lớn nhất không đổi. Do đó; mốt không đổi.

+ Sau khi sắp xếp lại các số liệu (cụ thể là đổ chỗ số đầu tiên và cuối cùng cho nhau) thì ta vẫn được dãy số liệu như ban đầu nên số trung vị không đổi.

+ Tương tự; phương sai không đổi.