Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)
\(=x^2-8x+16-x^2-8x-16-16x+32\)
\(=-32x+32\)
Biểu thức phụ thuộc vào giá trị của biến
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
1.
a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)
b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)
2.
a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)
b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ
3.
\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)
4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
\(A\ge\frac{7}{4}\)
Vậy GTNN của A là 7/4
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
Bài 1:
a) Ta có: \(\left(x^2-2x+1\right):\left(x-1\right)\)
\(=\left(x-1\right)^2:\left(x-1\right)\)
=x-1
b) Ta có: \(\left(x^3+1\right):\left(x^2-x+1\right)\)
\(=\frac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x+1\)
c) Ta có: \(\left(x^3-x^2-5x-3\right):\left(x-3\right)\)
\(=\frac{x^3-3x^2+2x^2-6x+x-3}{x-3}\)
\(=\frac{x^2\left(x-3\right)+2x\left(x-3\right)+\left(x-3\right)}{\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(x^2+2x+1\right)}{\left(x-3\right)}\)
\(=\left(x+1\right)^2\)
d) Ta có: \(\left(x^4+x^3-6x^2-5x+5\right):\left(x^2+x-1\right)\)
\(=\frac{x^4+x^3-x^2-5x^2-5x+5}{x^2+x-1}\)
\(=\frac{x^2\left(x^2+x-1\right)-5\left(x^2+x-1\right)}{x^2+x-1}\)
\(=\frac{\left(x^2+x-1\right)\left(x^2-5\right)}{x^2+x-1}\)
\(=x^2-5\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)
\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=-\frac{12}{x^2+x+1}\)
b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)
c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)
\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)
\(N=\frac{1+b+bc}{b+1+bc}\)
\(N=1.\)
Bài 3 :
Ta có : \(A=x^2+x+2012\)
=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)
=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)
- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)
- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)
<=> \(x=-\frac{1}{2}\)
Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .
Bài 1 :
a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .
b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
=> \(x\ne\pm1\)
Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)
=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)
=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)
=> \(x^2+2x+1-4x+4=x^2-3\)
=> \(-2x=-3-5\)
=> \(x=4\left(TM\right)\)
Vậy phương trình có nghiệm là x = 4 .
c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)
=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)
=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)
=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)
=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)
=> \(10x+2012=0\)
=> \(x=-\frac{2012}{10}\)
Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .
Bài 3:
Giải:
Ta có : A = x2 + x + 2012
= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\) ≥ \(\frac{8047}{4}\)
⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)
Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)
Chúc bạn học tốt@@
a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)
Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)