Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
A=\(\frac{2xy-x^2+z^2-y^2}{x^2+z^2-y^2+2xz}\)=\(\frac{z^2-\left(x^2-2xy+y^2\right)}{\left(x^2+2xz+z^2\right)-y^2}\)=\(\frac{z^2-\left(x-y\right)^2}{\left(x+z\right)^2-y^2}\)=\(\frac{\left(z+x-y\right)\left(z-x+y\right)}{\left(x+z-y\right)\left(x+z+y\right)}\)=\(\frac{\left(z-x+y\right)}{\left(x+z+y\right)}\)
Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)
Nhân theo vế:
\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)
Thay vào từng trường hợp tìm x;y;z
\(\frac{2xy-x^2+z^2-y^2}{-x^2+y-z^2+2xz}\)
\(=\frac{-\left[\left(x^2-2xy+y^2\right)-z^2\right]}{-\left[\left(x^2-2xz+z^2\right)-y\right]}\)
\(=\frac{-\left[\left(x-y\right)^2-z^2\right]}{-\left[\left(x-z\right)^2-y\right]}\)
\(=\frac{-\left(x-y-z\right)\left(x-y+z\right)}{-\left(x-z\right)^2+y}\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
Ta có: \(A=\frac{2a^3b^5}{3a^3b^2}=\frac{2b^3}{3}\)
Ta có:
\(B=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
A= \(\frac{2b^3}{3}\)
B= \(\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+z+y\right)\left(x+z-y\right)}=\frac{x+y-z}{x+z-y}\)