Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+42+43+44+...+459+460
A=(4+42)+(43+44)+...+(459+460)
A=4.(1+4)+43.(1+4)+...+459.(1+4)
A=4.5+43.5+...+459.5
A=5.(4+43+...+559) chia hết cho 5 (đpcm)
A=4+42+43+...+459+460
A=(4+42+43)+...+(458+459+460)
A=4.(1+4+42)+...+458.(1+4+42)
A=4.21+...+458.21
A=21.(4+...+458) chia hết cho 21 (đpcm)
ta có 4(1+4)+43(1+4)+.....+459(1+4)
=4.5+43.5+.....+459.5
=5(4+43+....+459) chia het cho 5
chia het cho 21 chứng minh tương tự nhóm 3 hạng tử đầu tiên
\(A=\left(4^1+4^2+4^3+4^4+...+4^{59}+4^{60}\right)\)
\(=4\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(=5\left(4+...+4^{59}\right)⋮5\)
\(A=4^1+4^2+4^3+4^4+..+4^{59}+4^{60}\)
\(=4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)\)
\(\Leftrightarrow21\left(4+...+4^{58}\right)⋮21\)
=>đpcm
a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)
A = \(5+4^2.5+...+4^{58}.5\)
A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)
a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)
A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)
a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)
A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)
A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)
Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v
mình đặt tên cho dễ
A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)
A=(1+4)+4^2(1+4)+.....+4^58(1+4)
A=5+4^2.5+....4^58.5
A=5.(1+4^2+....+4^58) => đcpm
B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)
B=(1+4+4^2)+.........+(4^57+4^58+4^59)
B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2
B=(1+4+4^2)+1+4^3+.....+4^57)
B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)
\(A=1+4+4^2...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^5+4^6\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=21+4^3\cdot21+....+4^{57}\cdot21\)
\(=21\left(1+4^3+4^6+...+4^{57}\right)⋮21\)
\(\Leftrightarrow A⋮21\)
Hok tốt
\(A = 1 + 4 + 4^2 + ... + 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)
\(A = ( 1 + 4 + 4^2 ) + ... + ( 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)\()\)
\(A = 21 + ... + 4\)\(57\)\(. ( 1 + 4 + 4^2 )\)
\(A = 21 + ... + 4\)\(57\) \(.21\)
\(A = 21 . ( 1 + ... + 4\)\(57\)\()\)\(⋮\)\(21\)
\(Vậy : A \)\(⋮\)\(21\)
ta có: \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Leftrightarrow4A=1.4+4.4+4^2.4+4^3.4+...+4^{99}.4\)
\(\Leftrightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Leftrightarrow4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{99}\right)\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow3A=B-1\)
\(\Leftrightarrow A=\frac{B-1}{3}\)
Mà:\(\frac{B-1}{3}< \frac{B}{3}\)
Nên:\(A< \frac{B}{3}\)
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
A=41+42+43+44+...+459+460
=(41+42)+(43+44)+...+(459+460)
=41(1+4)+43(1+4)+...+459(1+4)
=41*5+43*5+...+459*5
=5(41+43+...+459) chia hết 5
A=41+42+43+44+...+459+460
=(41+42+43)+...+(458+459+460)
=41(1+4+42)+...+458(1+4+42)
=41*21+...+458*21
=21*(41+...+458) chia hết 21