Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
5.
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ( do \(\Delta ABC\) cân tại A )
AH : cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
do đó \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\) HB = HC ( 2 cạnh tương ứng )
b) Có HB = HC ( chứng minh trên )
\(\Rightarrow\) HB + HC = BC
HB + HC = 8cm
2HB = 8cm
\(\Rightarrow\) HB = 4cm
Áp dụng định lý Pytago cho \(\Delta AHB\) có \(\widehat{AHB}=90^o\)
\(AB^2=BH^2+AH^2\)
\(5^2=4^2+AH^2\)
25 = 16 + \(AH^2\)
\(AH^2\) = 25 - 16
\(AH^2\) = 9
\(\rightarrow AH=3cm\)
c) Xét \(\Delta BDH\) và \(\Delta ECH\) có :
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A )
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
BH = HC ( chứng minh câu a )
do đó \(\Delta BDH=\Delta ECH\) ( cạnh huyền góc nhọn )
\(\Rightarrow\) HD = HE ( 2 cạnh tương ứng )
nên \(\Delta HDE\) cân tại H ( dấu hiệu nhận biết \(\Delta\) cân )
P/s : lúc nào rảnh làm tiếp nhé bây h muộn r , lm đại 1 bài dễ nhất trc ( xử lí lũ kia sau ) .
mình chịu
bạn làm được câu nào thì làm