Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a²+b²=x²+y²
<=>(a²-x²)+(b²-y²)=0
<=>(a-x)(a+x)+(b-y)(b+y)=0 (1)
a+b=x+y
<=>a-x=y-b,thay vào (1) ta có :
(y-b)(a+x)+(b-y)(b+y)=0
<=>(y-b)[(a+x)-(b+y)]=0
*TH1:y-b=0<=>y=b và x=a=>xn+yn=an+bn.
*TH2: a+x-(b+y)=0<=>a+x=b+y<=>
{x-y=b-a <=>{x=b
{x+y=a+b {a=y
=> xn+yn=an+bn.
Vậy xn+yn=an+bn
a²+b²=x²+y²
<=>(a²-x²)+(b²-y²)=0
<=>(a-x)(a+x)+(b-y)(b+y)=0 (1)
a+b=x+y
<=>a-x=y-b,thay vào (1) ta có :
(y-b)(a+x)+(b-y)(b+y)=0
<=>(y-b)[(a+x)-(b+y)]=0
*TH1:y-b=0<=>y=b và x=a=>xn+yn=an+bn.
*TH2: a+x-(b+y)=0<=>a+x=b+y<=>
{x-y=b-a <=>{x=b
{x+y=a+b {a=y
=> xn+yn=an+bn.
Vậy xn+yn=an+bn
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11