Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
a) ABCD là hình bình hành => AD=BC, AD//BC
--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)
Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.
b) AHDK không thể là hình bình hành nha --> phải là AHCK
Chứng minh: AH//CK (cùng vuông góc BD)
CH//AK (vì ABCD là hình bình hành)
=> AHCK là hình bình hành
|
1) Xét tam giác ABC có:
M là trung điểm của AB( gt)
N là trung điểm của BC( gt)
=> MN là đường trung bình của tam giác ABC
=> \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
Q là trung điểm của AD( gt)
P là trung điểm của DC( gt)
=> PQ là đường trung bình của tam giác ADC
=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)
b) Xét tam giác ABD có:
M là trung điểm của AB (gt)
F là trung điểm của BD(gt)
=> MF là đường trung bình của tam giác ABD
=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)
CMTT => EP là đường trung bình của tam giác ADC
=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)
Từ (3),(4) => Tứ giác MEPF là hình bình hành
c) Ta có: MN là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)
Ta có: PQ là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)
Từ (5),(6) => Tứ giác MNPQ là hình bình hành
=> MP cắt PQ tại trung điểm của MP(t/c)
Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)
=> MP,NQ,EF đồng quy