K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Bài 1: ( Tự vẽ hình )

Áp dụng tỉ số lượng giác trong tam giác vuông DEF

\(TanF=\frac{DE}{DF}=\frac{3}{5}\)

\(TanF=31\)

Bài 2: ( Tự vẽ hình, gợi ý: Vẽ tam giác vuông ABC chọn góc \(\widehat{B}\)là góc \(\alpha\))

Áp dụng định lý Pytago vào tam giác vuông ABC:

\(BC^2=AC^2+AB^2\)

\(1+cot^2\alpha=1+\frac{AB^2}{AC^2}=\frac{AC^2+AB^2}{AC^2}\)

\(1+cot^2\alpha=\frac{BC^2}{AC^2}=1:\frac{AC^2}{BC^2}\)

\(1+cot^2\alpha=1:sin^2\alpha\)

\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)

3 tháng 10 2015

a) Kẻ đường cao EH của tam giác

Xét tam giác vuông DEH vuông tại H ta có

sinD = EH/ED => EH = sinD . ED = sin600 . 6 = \(\frac{\sqrt[]{3}}{2}.6=3\sqrt{3}cm\)

Diện tích tam giác DEF là : \(\frac{1}{2}\times EH\times DF=\frac{1}{2}.3\sqrt{3}.8=12\sqrt{3}\left(cm^2\right)\)

b)xét tam giác EDH có: DH = cosD . ED = 1/2 .  6 = 3 cm

ta lại có:  HF = DF - DH = 8 - 3 = 5 cm

Xét tam giác vuông EHF. theo pitago ta có

EF2 = EH2 + HF = \(\left(3\sqrt{3}\right)^2+5^2=27+25=52\)

EF = \(\sqrt{52}\)

 

10 tháng 11 2016

Bài 1: Giả sử

\(8-\sqrt{2}>4+\sqrt{5}\)

\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)

\(\Leftrightarrow16>7+2\sqrt{10}\)

\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)

Vậy \(8-\sqrt{2}>4+\sqrt{5}\)

10 tháng 11 2016

Bài 3: Ta có

\(x^2+2015x-2014=2\sqrt{2017x-2016}\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)

\(\Leftrightarrow x=1\)

6 tháng 10 2021

Ko biết làm

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)