Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ đường cao EH của tam giác
Xét tam giác vuông DEH vuông tại H ta có
sinD = EH/ED => EH = sinD . ED = sin600 . 6 = \(\frac{\sqrt[]{3}}{2}.6=3\sqrt{3}cm\)
Diện tích tam giác DEF là : \(\frac{1}{2}\times EH\times DF=\frac{1}{2}.3\sqrt{3}.8=12\sqrt{3}\left(cm^2\right)\)
b)xét tam giác EDH có: DH = cosD . ED = 1/2 . 6 = 3 cm
ta lại có: HF = DF - DH = 8 - 3 = 5 cm
Xét tam giác vuông EHF. theo pitago ta có
EF2 = EH2 + HF = \(\left(3\sqrt{3}\right)^2+5^2=27+25=52\)
EF = \(\sqrt{52}\)
Bài 1: Giả sử
\(8-\sqrt{2}>4+\sqrt{5}\)
\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)
\(\Leftrightarrow16>7+2\sqrt{10}\)
\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)
Vậy \(8-\sqrt{2}>4+\sqrt{5}\)
Bài 3: Ta có
\(x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)
\(\Leftrightarrow x=1\)
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
Bài 1: ( Tự vẽ hình )
Áp dụng tỉ số lượng giác trong tam giác vuông DEF
\(TanF=\frac{DE}{DF}=\frac{3}{5}\)
\(TanF=31\)
Bài 2: ( Tự vẽ hình, gợi ý: Vẽ tam giác vuông ABC chọn góc \(\widehat{B}\)là góc \(\alpha\))
Áp dụng định lý Pytago vào tam giác vuông ABC:
\(BC^2=AC^2+AB^2\)
\(1+cot^2\alpha=1+\frac{AB^2}{AC^2}=\frac{AC^2+AB^2}{AC^2}\)
\(1+cot^2\alpha=\frac{BC^2}{AC^2}=1:\frac{AC^2}{BC^2}\)
\(1+cot^2\alpha=1:sin^2\alpha\)
\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)