K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Ta có :góc DAE=góc BAC (đối đỉnh)

Xét tam giác ABC cân tại A : \(ABC=ACB=\frac{180^0-BAC}{2}\)

Xét tam giác DAE cân tại A: \(ADE=AED=\frac{180^0-DAE}{2}\)

=>góc ABC=góc ACB=góc ADE=góc AED

Vì góc ADE=góc ACB,mà chúng ở vị trí SLT

=>DE//BC

=>tg BEDC là hình thang

Xét tam giác DAB và tam giác EAC :

góc DAB=góc EAC (đối đỉnh)

AD=AE(gt)

AB=AC(tam giác ABC cân tại A)

=>tg DAB=tg EAC (c.g.c)

=>BD=EC (cặp cạnh t.ứng)

Vì ht BEDC có BD=EC

=>BEDC là hình thang cân

a: Xét ΔAED và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

\(\widehat{EAD}=\widehat{CAB}\)

Do đó: ΔAED\(\sim\)ΔACB

Suy ra: \(\widehat{AED}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà EC=BD

nên BEDC là hình thang cân

22 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Xét tứ giác ABKI có

M là trung điểm chung của AK và BI

Do đó: ABKI là hình bình hành

=>KI//AB

mà AB\(\perp\)AC

nên KI\(\perp\)AC

Xét ΔCAI có

IK,CH là đường cao

IK cắt CH tại K

Do đó: K là trực tâm của ΔCAI

=>AK\(\perp\)IC

9 tháng 8 2015

a) Tam giác ADE có HE=HA; MD=MA nên HM là đường trung bình của tam giác ADE

=> HM//ED

mà HM vuông góc với AE nên ED cũng vuông góc với AE.

Vậy ΔAED vuông tại E.

b) Xét ΔABM và ΔDCM có:

       MA=MD(gt)

Góc AMB=DMC(đối đỉnh)

       MB=MC(gt)

Vậy ΔABM=ΔDCM(c.g.c).

=> Góc ABM = DCM( hai góc tương ứng) (1)

ΔABE có BH vừa là đường cao vừa là trung tuyến nên ΔABE cân tại B, nên BH cũng là đường cao

=> Góc ABM=EBH (2)

Từ (1) và (2) suy ra góc EBH = DCM hay EBC = DCB.

Tứ giác BCDE có ED//BC( do ED//HM đó) nên BCDE là hình thang.

Hình thang BDCE có thêm hai góc kề đáy EBC=DCB nên BDCE là hình thang cân.

bạn có chs liên quân hay bang bang 4399 ko