K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

2 tháng 7 2021

A B C H D E

a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)

Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)

b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)

Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)

Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC

Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)

12 tháng 8 2017

ta can cm\(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\) =\(\sqrt[3]{BC}\)

 hay  \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=1\)

trong tam giác AHB \(BH^2=BE.BA\Rightarrow BE=\frac{BH^2}{BA}\Rightarrow BE^2=\frac{BH^4}{BA^2}\) (1)

ma trong tam giac ABC \(AB^2=BH.BC\)

thay vao (1) ta co \(BE^2=\frac{BH^4}{AB^2}=\frac{BH^4}{BH.BC}=\frac{BH^3}{BC}\Rightarrow\frac{BE^2}{BC^2}=\frac{BH^3}{BC^3}\)

\(\Rightarrow\sqrt[3]{\frac{BE^2}{BC^2}}=\frac{BH}{BC}\)

CM TUONG TU \(\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{CH}{BC}\)

VAY \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{HB}{BC}+\frac{CH}{BC}=1\) 

9 tháng 8 2019

câu a) bn có thể vào câu hỏi tương tự xem, cái này làm vui thôi 

Ta có: \(BN=\frac{BH^2}{AB};CM=\frac{CH^2}{AC};AB.AC=AH.BC;BH.CH=AH^2\)

\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\)

\(\Leftrightarrow\)\(BC^2=BN^2+CM^2+3\sqrt[3]{\left(BN.CM\right)^2}\left(\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\right)\)

\(\Leftrightarrow\)\(BC^2=BH^2-NH^2+CH^2-MH^2+3\sqrt[3]{\left(\frac{\left(BH.CH\right)^2}{AB.AB}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH^2+CH^2\right)-\left(NH^2+MH^2\right)+3\sqrt[3]{\left(\frac{AH^4}{AH.BC}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH+CH\right)^2-2BH.CH-\left(NH^2+MH^2\right)+3\sqrt[3]{\frac{AH^6}{BC^2}}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=BC^2-2AH^2-AH^2+3AH^2\) ( do \(NH^2=AM^2\) ) 

\(\Leftrightarrow\)\(BC^2=BC^2\) ( luôn đúng ) 

\(\Rightarrow\)\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\) đúng 

9 tháng 8 2019

b) bằng một cách nào đó \(\Delta NBH\) đã đồng dạng với \(\Delta ABC\) ( có góc B chung ) \(\Rightarrow\)\(\frac{BN}{AB}=\frac{BH}{BC}\)

Tương tự: \(\Delta MHC~\Delta ABC\) ( có góc C chung ) \(\Rightarrow\)\(\frac{CM}{AC}=\frac{CH}{BC}\)

\(\Rightarrow\)\(\frac{BN}{AB}+\frac{CM}{AC}=\frac{BH+CH}{BC}=1\)

\(\Leftrightarrow\)\(BN.AC+CM.AB=AB.AB\)

\(\Leftrightarrow\)\(BN\sqrt{AC^2}+CM\sqrt{AB^2}=AB.AC\)

\(\Leftrightarrow\)\(BN\sqrt{CH.BC}+CM\sqrt{BH.BC}=AH.BC\)

\(\Leftrightarrow\)\(BN\sqrt{CH}+CM\sqrt{BH}=AH\sqrt{BC}\) ( chia 2 vế cho \(\sqrt{BC}\ne0\) ) đpcm