\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng. Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0). a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\) b) Tìm điểm D đối xứng của A qua C Bài 4: Trong mặt phẳng Oxy, cho ba...
Đọc tiếp

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).

a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)

b) Tìm điểm D đối xứng của A qua C

Bài 4: Trong mặt phẳng Oxy, cho ba điểm A(1;-2), B(0;4), C(3;2)

a) Tìm tọa độ các vector \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BC}\)

b) Tìm tọa độ trung điểm I của đoạn AB

c) Tìm tọa độ điểm M sao cho: \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)

d) Tìm tọa độ điểm N sao cho: \(\overrightarrow{AN}+2\overrightarrow{BN}-4\overrightarrow{CN}=\overrightarrow{0}\)

0
22 tháng 11 2019

a/ Để tứ giác ADCB là hbh

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\left(x_D-x_A;y_D-y_A\right)=\left(x_C-x_B;y_C-y_B\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=4+2\\y_D-2=4-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=7\\y_D=0\end{matrix}\right.\Rightarrow D\left(7;0\right)\)

b/ Có phải đề bài là:

\(2\overrightarrow{EA}-4\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{0}?\)

\(\Rightarrow2\left(x_A-x_E;y_A-y_E\right)-4\left(x_B-x_E;y_B-y_E\right)+\left(x_C-x_E;y_C-y_E\right)=0\)

\(\Leftrightarrow2\left(1-x_E;2-y_E\right)-4\left(-2-x_E;6-y_E\right)+\left(4-x_E;4-y_E\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2-2x_E+8+4x_E+4-x_E=0\\4-2y_E-24+4y_E+4-y_E=0\end{matrix}\right.\)

Bạn tự giải nốt

28 tháng 11 2019

Kết quả bài này là bao nhiêu vậy ạ?

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Câu 1:

\(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)\(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)

Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)

\(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)

\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)

Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)

Ta có:

\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)

\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)

Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$

Do đó \(M=(-\frac{1}{2};0)\)

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)