Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. A B C D O E F
+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)
\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)
+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)
+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)
\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)
Bài 1:
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MD=BN/NC
b: AM/MD=BN/NC
=>MD/AM=NC/BN
=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)
=>AD/AM=BC/BN
=>AM/AD=BN/BC
c: AM/AD=BN/BC
=>1-AM/AD=1-BN/BC
=>DM/AD=CN/CB
???ng th?ng m: ???ng th?ng qua B, A ???ng th?ng n: ???ng th?ng qua C, D ???ng th?ng p: ???ng th?ng qua O song song v?i f ?o?n th?ng f: ?o?n th?ng [A, D] ?o?n th?ng h: ?o?n th?ng [B, A] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [C, D] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [C, A] ?o?n th?ng q: ?o?n th?ng [P, H] ?o?n th?ng r: ?o?n th?ng [K, H] A = (-2.78, -0.04) A = (-2.78, -0.04) A = (-2.78, -0.04) D = (2.72, -0.06) D = (2.72, -0.06) D = (2.72, -0.06) B = (-2.02, 3.14) B = (-2.02, 3.14) B = (-2.02, 3.14) ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p
Cô hướng dẫn nhé :)
a. Ta thấy P, H lần lượt là trung điểm AB, AD nên PH là đường trung bình tam giác ABD, từ đó suy ra PH//DB.
Tương tự như vậy IQ cũng song song BD, lại có IQ = HP = BD/2 nên HPIQ là hình bình hành.
b. Ta có MN song song hai cạnh đáy, áo dụng định lý Ta let ta có:
\(\frac{MO}{BC}=\frac{AM}{AB}=\frac{DN}{DC}=\frac{ON}{BC}\). Vậy OM = ON.
Ta chứng minh giao điểm của KO với AB, AD sẽ là trung điểm. GIả sử hai giao điểm đó là I, H. Cũng dùng Ta let ta có: \(\frac{BI}{OM}=\frac{KI}{KO}=\frac{IC}{ON}\). Vậy IB = IC. Tương tự HA = HD.
c. \(\frac{BC}{AD}=\frac{OI}{OH}\)
d. \(\frac{S\Delta KBC}{S\Delta KAH}=\left(\frac{BC}{AD}\right)^2=\frac{1}{16}\Rightarrow\frac{SABCD}{S\Delta KAD}=\frac{15}{16}\Rightarrow S\Delta KAD=25,6\Rightarrow S\Delta KAH=\frac{25,6}{2}=12,8\)
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)
Bài 1:
A B C M N O
Ta có BM là đường trung tuyến
⇒ \(\dfrac{OM}{OB}=\dfrac{1}{2}\)
CN là đường trung tuyến
⇒ \(\dfrac{ON}{OC}=\dfrac{1}{2}\)
Suy ra: \(\dfrac{OM}{OB}=\dfrac{ON}{OC}\Rightarrow OM.OC=ON.OB\)
...