Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABE và tam giác ACD có:
AE = AD (gt)
AB = AC (tam giác ABC cân tại A)
^BAC chung
=> Tam giác ABE = Tam giác ACD (c - g - c)
=> BE = CD (cặp cạnh tương ứng)
b/ Vì tam giác ABE = tam giác ACD (cmt)
=> ^ABE = ^ACD (cặp góc tương ứng) (1)
Vì tam giác ABC cân tại A (gt) => ^ABC = ^ACB (TC tam giác cân) (2)
Lại có: ^ABC = ^ABE + ^EBC
^ACB = ^ACD + ^ECB (3)
Từ (1) (2) (3) => ^EBC = ^ECB => Tam giác BIC cân tại I
c/ Xét tam giác ADE có: AD = AE (tam giác ABE = tam giác ACD)
=> Tam giác ADE cân tại A
=> ^ADE = ^AED = \(\dfrac{180-gócA}{2}\)
Tam giác ABC cân tại A (gt) => ^ABC = ^ACB = \(\dfrac{180-gócA}{2}\)
=> ^ADE = ^AED = ^ABC = ^ACB
Ta có: ^ADE = ^ABC (cmt)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
hình tự vẽ
a,Xét \(\Delta AEB\)và \(\Delta ADC\)có
\(AE=AD\left(gt\right)\)
\(\widehat{A}\): chung
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta AEB=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(2 cạnh tương ứng)
b,\(\Delta AEB=\Delta ADC\left(cmt\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)(2 góc tương ứng)
mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABCcân\right)\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\Rightarrow\Delta KBC\)cân
c;Xét \(\Delta AKB\)và \(\Delta AKC\)có:
\(AB=AC\left(gt\right)\)
\(AK:chung\)
\(KB=KC\left(\Delta KBCcân\right)\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.c.c\right)\Rightarrow\widehat{KAB}=\widehat{KAC}\)(2 góc tương ứng)
\(\Rightarrow AK\)là tia phân giác của góc A
a: Xet ΔAEB và ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xet ΔKDB và ΔKEC có
góc KDB=góc KEC
DB=EC
góc KBD=góc KCE
=>ΔKBD=ΔKCE
c: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
=>ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
a) Ta có:
AB = AD + DB
AC = AE + EC
Mà AB = AC (gt) và AD = AE (gt)
=> DB = EC
Xét △DBC và △ECB có:
DB = EC (cmt)
DBC = ECB (△ABC cân)
BC: chung
=> △DBC = △ECB (c.g.c)
=> CD = BE (2 cạnh tương ứng)
b) Vì △DBC = △ECB => DCB = EBC (2 góc tương ứng)
=> △KBC cân
c) Xét △AKB và △AKC có:
AB = AC (gt)
AK: chung
KB = KC (△KBC cân)
=> △AKB = △AKC (c.c.c)
=> KAD = KAC (2 góc tương ứng)
=> AK là phân giác BAC
d) Xét △HAB và △HAC có:
AB = AC (gt)
HAB = HAC (AH: phân giác BAC)
AH: chhung
=> △HAB = △HAC (c.g.c)
=> AHB = AHC (2 góc tương ứng)
Ta có: AHB + AHC = 180o
=> AHB = AHC = 180o : 2 = 90o
Vì △HAB = △HAC => HB = HC = BC : 2 = 3
Xét △AHB vuông tại H có:
HA2 + HB2 = AB2 (định lí Pytago)
=> AH2 = AB2 - HB2
=> AH = 4 cm
Vậy AH = 4cm
a) Xét tam giác ABE và tam giác ACD có :
AB = AC ( tam giác ABC cân )
Góc A là góc chung
AE = AD (gt)
=> Tam giác ABE = tam giác ACD ( c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
b) Ta có : Góc CDB = 180 - góc ADC ( Kề bù )
Góc BEC = 180 - góc AEB ( Kề bù )EC
mà Góc ADC = góc AEB ( tam giác ABE = tam giác ADC )
=> Góc CDB = góc BEC
Lại có : DB = AB - AD
EC = AC - AE
mà AB = AC ( gt)
AD = AE (gt)
=> DB = EC
Xét tam giác DKB và tam giác EKC có :
CDB = BEC ( cmt)
DB = EC (cmt)
DBE = ECD ( tam giác ABE = tam giác ACD )
=> Tam giác DKB = tam giác EKC ( g.c.g)
c) Xét tam giác AKB và tam giác AKC có :
AK là cạnh chung
AB = AC ( gt)
KB = KC (tam giác DKB = tam giác EKC )
=> Tam giác AKB = tam giác AKC ( c.c.c)
=> Góc BAK = góc CAK (2 góc tương ứng )
=> AK là tia phân giác của góc A
d) Ta có : KB = KC ( tam giác DKB = tam giác EKC )
=> Tam giác KBC là tam giác cân
CHÚC HỌC GIỎI
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a, xét tam giác ABE và tam giác ACD có:
AB=AC(gt); góc A chung; AD=AE(gt)
suy ra tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD(đpcm)
b, do 2 tam giác ABE và ACD bằng nhau
suy ra góc ABE = góc ACD
mạt khác ABC=ACB(gt)
suy ra góc EBC= góc DCB
suy ra tam giác KBC cân tại K