K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2015

a, S = 5+52+53+.....+52006

5S = 52+53+54+....+52007

4S = 5S - S = 52007-5

=> S = \(\frac{5^{2007}-5}{4}\)

b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu

1 tháng 9 2015

Trong câu hỏi tương tự có đó bn.

**** cho mình đi.

22 tháng 12 2021

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^8+3^9\right)=\)

\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)=\)

\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)

29 tháng 11 2023

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

15 tháng 2 2018

S=3^1+3^2.(3^1+3^3)+3^2.(3^5+3^7)+...+3^2.(3^2011+3^2013)

S=3+9.(3^1+3^3)+9.(3^5+3^7)+...+9.(3^2011+3^2013)

vậy S ko chia hết cho 9

vậy đề a sai

15 tháng 2 2018

Giúp mình cái xin đấy

9 tháng 5 2019

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

6 tháng 12 2020
Bạn làm đúng rồi nhưng hơi dài
17 tháng 6 2016

1) A= 43 . 52 / 82

A = (22)3 . 25 / (23)2

 A = 26 . 25 / 26

A = 25

2)B) Do a không chia hết cho 5 nên a2  không chia hết cho 5

=> a2 chia 5  dư 1 hoặc 4

- Nếu a2 chia 5 dư 1 => a chia 5 dư 1 hoặc 4

+Với a chia 5 dư 1 => a - 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

+ Với a chia 5 dư 4 => a + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

- Nếu a2 chia 5 dư 4 => a^2 + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

=> đpcm

19 tháng 6 2016

bạn ơi dpcm là cái j z 

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

22 tháng 9 2017

Bạn tự ghi lại đề nha!

S . 5 = 5 . ( 5 + 52 + 53 + ... + 599 + 5100 )

S . 5 = 52 + 53 + 54 + ... + 5100 + 5101

S . 5 - S = ( 5+ 53 + 5+ ... + 5100 + 5101 ) - ( 5 + 5+ 5+ ... + 599 + 5100 )

S . 4 = 5101 - 5

S = \(\frac{5^{101}-5}{4}\)

22 tháng 9 2017

Bạn hơi lạc đề nhưng mk vẫn k cho bn rồi đấy

a: Sửa đề: S=5+5^2+...+5^2006

5S=5^2+5^3+...+5^2007

=>4S=5^2007-5

=>S=(5^2007-5)/4

b: S=5+5^4+5^2+5^5+...+5^2003+5^2006

=5(1+5^3)+5^2(1+5^3)+...+5^2003(1+5^3)

=126(5+5^2+...+5^2003) chia hết cho 126