\(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

Vì \(\left(2x_1-3y_1\right)^{2016}\ge0;\left(2x_2-3y_2\right)^2\ge0;......;\left(2x_{2015}-3y_{2015}\right)\ge0\)

nên  \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{2015}\right)\le0\)

\(\Leftrightarrow\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+..+\left(2x_{2015}-3y_{2015}\right)^{2016}=0\)

\(\Leftrightarrow2x_1-3y_1=0;2x_2-3y_2=0;....;2x_{2015}-3y_{2015}=0\)

\(\Leftrightarrow2x_1=3y_1\)           

     \(2x_2=3y_2\)

    ............................

    \(2x_{2015}=3y_{2015}\)

\(\Leftrightarrow2\left(x_1+x_2+...+x_{2015}\right)=3\left(y_1+y_2+...+y_{2015}\right)\)

\(\Leftrightarrow\)\(\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}=\frac{3}{2}\)

 

NV
20 tháng 11 2018

Ta có \(\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}\ge0\\......\\\left(2x_{2005}-3y_{2005}\right)^{2004}\ge0\end{matrix}\right.\) \(\forall x_1;x_2...x_{2005};y_1;y_2;...y_{2005}\)

Mà theo đề cho \(\left(2x_1-3y_1\right)^{2004}+...+\left(2x_{2005}-3y_{2005}\right)^{2004}\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}=0\\\left(2x_2-3y_2\right)^{2004}=0\\.........\\\left(2x_{2005}-3y_{2005}\right)^{2004}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x_1-3y_1=0\\2x_2-3y_2=0\\........\\2x_{2005}-3y_{2005}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}y_1\\x_2=\dfrac{3}{2}y_2\\.....\\x_{2005}=\dfrac{3}{2}y_{2005}\end{matrix}\right.\)

Từ đó ta có:

\(\dfrac{x_1+x_2+...+x_{2005}}{y_1+y_2+...+y_{2005}}=\dfrac{\dfrac{3}{2}y_1+\dfrac{3}{2}y_2+...+\dfrac{3}{2}y_{2005}}{y_1+y_2+...+y_{2005}}\)

\(=\dfrac{\dfrac{3}{2}\left(y_1+y_2+...+y_{2005}\right)}{y_1+y_2+...+y_{2005}}=\dfrac{3}{2}=1.5\) (đpcm)

NV
20 tháng 11 2018

Ghi lại đề đi bạn, nhìn qua dấu các biểu thức là biết bạn ghi sai đề rồi

29 tháng 12 2019

u ở mẫu là cái gì vậy ?

Chàng Trai 2_k_7             

30 tháng 12 2019

bor did

22 tháng 8 2016

tr..... k biết.

22 tháng 8 2016

- Nát óc cẫn ko ra, chán

11 tháng 10 2020

help me!!!!!!!!!!!!!!!

10 tháng 3 2016

xét A \(\ge\) 0;có A\(\le\) 0=>A=0

từ đó tính được x;y thế vào B làm tiếp

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)