K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

bài 3

A B C D E M N K K' x I O

Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )

Ta sẽ chứng minh K' \(\equiv\)

Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I 

dễ thấy O là trung điểm MN

do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)

\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N

\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)

Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là  đường phân giác \(\widehat{K'NE}\)( 1 )

mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng

28 tháng 2 2020

A B C H M E F D

Trên tia đối tia HC lấy D sao cho HD = HC

Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành

\(\Rightarrow\)DE // CF 

\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH

\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)

Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình 

\(\Rightarrow\)MH // BD

\(\Rightarrow\)MH \(\perp EF\)

20 tháng 7 2015

Một bài đã làm không xong mà bạn ra hai bài thì ............

28 tháng 9 2018

Bài 1: Con tham khảo tại câu dưới đây nhé.

Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối...
Đọc tiếp

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB

2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối xứng với A qua d, Giả sử góc ACH = góc BCK

  a, Chứng minh rằng kí đó A' , C , B thẳng hàng

  b, Nêu cách dựng điểm C sao cho AC + BC bé nhất

3, Cho tam giác ABC. Dựng hình đối xứng với tam giác đã cho qua trung điểm D của cạnh BC

  a, Tứ giác tạo thành là hình gì

  b, Tính chu vi tứ giác đó biết AB = 10cm, AC = 7cm

4, Cho hình bình hành với E, F lần lượt là trung điểm của AD, BC; G thuộc đoạn AB. Gọi H và I lần lượt là điểm đối xứng của G qua E và F

  a, Chứng minh H, D, C, I thẳng hàng

  b, Chưng minh HI = 2CD

0
24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật